【題目】已知:如圖,已知ABC

1)分別畫出與ABC關(guān)于軸對(duì)稱的圖形A1B1C1 ,

2)寫出 A1B1C1各頂點(diǎn)坐標(biāo); A1 , B1 , C1 ,

3ABC的面積= 。

4)在x軸上找一點(diǎn)p,使點(diǎn)p到點(diǎn)A的距離和點(diǎn)C的距離最短。

【答案】1)見詳解;(2A10-2),B1-2,-4),C1-4,-1);(35;(4)見詳解

【解析】

1)分別作出各點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn),再順次連接;

2)由各點(diǎn)在坐標(biāo)系中的位置寫出各點(diǎn)坐標(biāo)即可;
3)利用四邊形的面積減去三個(gè)頂點(diǎn)上三角形的面積即可;

4)利用軸對(duì)稱的性質(zhì),找出A的對(duì)稱點(diǎn)A′,連接C A′,與x軸交點(diǎn)即為P

解:(1)關(guān)于y軸的圖形如圖所示;

2)由圖可知,A10-2),B1-2-4),C1-4,-1);

3SABC=3×4-×2×3-×4×1-×2×2=12-3-2-2=5

4)如圖所示

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,∠BAC與∠ACD的角平分線交于點(diǎn)E,且AC=13,AE=5,則ABCD之間的距離是( )

A.7B.8C.D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=AC=6cm,B=C,BC=4cm,點(diǎn)DAB的中點(diǎn).

(1)如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?

(2)若點(diǎn)Q1.5cm/s的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),則經(jīng)過(guò)_____秒后,點(diǎn)P與點(diǎn)Q第一次在△ABCAC邊上相遇?(在橫線上直接寫出答案,不必書寫解題過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的材料,回答問(wèn)題:

解方程,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:

設(shè),那么,于是原方程可變?yōu)?/span>,解得,

當(dāng)時(shí),,∴;

當(dāng)時(shí),,∴;

原方程有四個(gè)根:,,

在由原方程得到方程的過(guò)程中,利用________法達(dá)到________的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想.

解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一玩具城以/個(gè)的價(jià)格購(gòu)進(jìn)某種玩具進(jìn)行銷售,并預(yù)計(jì)當(dāng)售價(jià)為/個(gè)時(shí),每天能售出個(gè)玩具,且在一定范圍內(nèi),當(dāng)每個(gè)玩具的售價(jià)平均每提高元時(shí),每天就會(huì)少售出個(gè)玩具

若玩具售價(jià)不超過(guò)/個(gè),每天售出玩具總成本不高于元,預(yù)計(jì)每個(gè)玩具售價(jià)的取值范圍;

在實(shí)際銷售中,玩具城以中每個(gè)玩具的最低售價(jià)及相應(yīng)的銷量為基礎(chǔ),進(jìn)一步調(diào)整了銷售方案,將每個(gè)玩具的售價(jià)提高了,從而每天的銷售量降低了,當(dāng)每天的銷售利潤(rùn)為元時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC (BCAD),∠D=90°,∠ABE=45°,BCCD,

AE=5,CE=2,BC的長(zhǎng)度為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=ECD=90°,DAB邊上一點(diǎn).

(1)求證:△ACE≌△BCD;

(2)AD=5,BD=12,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是投影儀安裝截面圖.教室高EF=3.5 m,投影儀A發(fā)出的光線夾角∠BAC=30°,投影屏幕高BC=1.2 m.固定投影儀的吊臂AD=0.5 m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下邊沿離地面的高度CF(結(jié)果精確到0.1 m).

(參考數(shù)據(jù):tan15°≈0.27,tan30°≈0.58)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,臺(tái)風(fēng)中心位于點(diǎn),并沿東北方向移動(dòng),已知臺(tái)風(fēng)移動(dòng)的速度為40千米/時(shí),受影響區(qū)域的半徑為260千米,市位于點(diǎn)的北偏東75°方向上,距離點(diǎn)480千米.

1)說(shuō)明本次臺(tái)風(fēng)是否會(huì)影響市;

2)若這次臺(tái)風(fēng)會(huì)影響市,求市受臺(tái)風(fēng)影響的時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案