解:
(1)平行.
證明:設∠AOD=∠COD=x,
∠BOC=∠OBC=y,
則∠BOD=x+y=90°,
故2x+2y=180°,
即∠AOB+∠OBC=180°,
得AO∥CB.
(2)如圖所示,作垂線GE⊥CB、FO⊥AO.
∵AO∥CB,
∴FO⊥BC;
∴GE∥OF(垂直于同一條直線的兩條直線平行),
∴∠GEO=∠FOE;
∵GE、OF為法線,
∴∠DEG=∠GEO,∠EOF=∠BOF,
∴∠DEO=∠EOB,
∴DE∥OB
∴∠EDB=∠DBO,
∵BD為法線,
∴∠EDB=∠BDO,
∴∠BDO=∠DBO,
∴∠BDO=45°.
(3)選②,∠OPB+∠OQB=90°,
證明:設∠AOD=∠DOQ=x,
∠PBD=∠QBD=y,
在△PNO和△DNB中∠OPB+x=45°+y,
在△QHB和△DHO中∠OQB+y=45°+x,
兩式相加得∠OPB+∠OQB=90°.
分析:(1)AO與CB平行,只要證明∠AOB+∠OBC=180°即可;
(2)作垂線GE⊥CB、FO⊥AO,由GE、OF為法線,∠DEG=∠GEO,∠EOF=∠BOF,再由平行線的性質即可求解;
(3)設∠AOD=∠DOQ=x,∠PBD=∠QBD=y,
在△PNO和△QNB中∠OPB+x=45°+y,
在△QHB和△DHO中∠OQB+y=45°+x,
兩式相加得∠OPB+∠OQB=90°.
點評:本題主要證明了平行線的證明方法,可以證明兩直線被第三條直線所截得到的內錯角相等.并且本題考查了平行線的性質.