如圖,在平面直角坐標系中,拋物線y=-nx2-與x軸交于A,B兩點,與y軸交于點C(0,-2).
(1)求n的值.
(2)求點A、B的坐標;
(3)求證:AC⊥CB.

【答案】分析:(1)將點C(0,-2)代入拋物線y=-nx2-,即可得到關(guān)于n的方程,解方程即可求得n的值;
(2)將n的值代入拋物線的解析式得:y=,A,B是拋物線與x軸的交點,即:=0,解方程求得x的值,從而得到點A、B的坐標;
(3)根據(jù)勾股定理求得AC2,BC2的值,根據(jù)點A、B的坐標可求AB的長,再根據(jù)勾股定理的逆定理即可證明AC⊥CB.
解答:解(1)拋物線與y軸的交點C的坐標為(0,-2),則
2n-1=-2,
解得n=;

(2)將n=-代入拋物線的解析式得:y=
A,B是拋物線與x軸的交點,即:=0,
解得:x1=4,x2=-1,
則A的坐標為(-1,0),B的坐標為(4,0);

(3)OA=1,OC=2,AC2=5,OB=4,BC2=20,AB=5,
故:AC2+AC2=5+20=25=AB2,
所以AC⊥CB.
點評:考查了二次函數(shù)綜合題,涉及勾股定理,勾股定理的逆定理,用待定系數(shù)法求二次函數(shù)的解析式,拋物線與x軸的交點等知識點,本題綜合性較強,通過做題培養(yǎng)學生分析問題和解決問題的能力,題型較好,難度適中.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習冊答案