【題目】先化簡,再求值:÷(1﹣).其中m滿足一元二次方程m2+(5tan30°)m﹣12cos60°=0.

【答案】解:原式=÷====,
方程m2+(5tan30°)m﹣12cos60°=0,化簡得:m2+5m﹣6=0,
解得:m=1(舍去)或m=﹣6,
當m=﹣6時,原式=﹣
【解析】原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算得到最簡結(jié)果,求出m的值代入計算即可求出值.
【考點精析】利用因式分解法和特殊角的三角函數(shù)值對題目進行判斷即可得到答案,需要熟知已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢;分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)問題進行計算:
(1)計算:(x+3)(x﹣3)﹣x(x﹣2)
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠ABC的平分線與AC相交于點D,與⊙O過點A的切線相交于點E.
(1)∠ACB=°,理由是:;
(2)猜想△EAD的形狀,并證明你的猜想;
(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(1,5),B(4,2),點P在x軸上,當AP+BP最小時,點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】云南魯?shù)榘l(fā)生地震后,某社區(qū)開展獻愛心活動,社區(qū)黨員積極向災區(qū)捐款,如圖是該社區(qū)部分黨員捐款情況的條形統(tǒng)計圖,那么本次捐款錢數(shù)的眾數(shù)和中位數(shù)分別是( 。

A.100元,100元
B.100元,200元
C.200元,100元
D.200元,200元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某糧油超市平時每天都將一定數(shù)量的某些品種的糧食進行包裝以便出售,已知每天包裝大黃米的質(zhì)量是包裝江米質(zhì)量的倍,且每天包裝大黃米和江米的質(zhì)量之和為45千克.
(1)求平均每天包裝大黃米和江米的質(zhì)量各是多少千克?
(2)為迎接今年6月20日的“端午節(jié)”,該超市決定在前20天增加每天包裝大黃米和江米的質(zhì)量,二者的包裝質(zhì)量與天數(shù)的變化情況如圖所示,節(jié)日后又恢復到原來每天的包裝質(zhì)量.分別求出在這20天內(nèi)每天包裝大黃米和江米的質(zhì)量隨天數(shù)變化的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

(3)假設(shè)該超市每天都會將當天包裝后的大黃米和江米全部售出,已知大黃米成本價為每千克7.9元,江米成本每千克9.5元,二者包裝費用平均每千克均為0.5元,大黃米售價為每千克10元,江米售價為每千克12元,那么在這20天中有哪幾天銷售大黃米和江米的利潤之和大于120元?[總利潤=售價額﹣成本﹣包裝費用].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩車在途中相遇后分別按原速同時駛往甲地,兩車之間的距離S(km)與慢車行駛時間t(h)之間的函數(shù)圖象如圖所示,

下列說法:
①甲、乙兩地之間的距離為560km;
②快車速度是慢車速度的1.5倍;
③快車到達甲地時,慢車距離甲地60km;
④相遇時,快車距甲地320km
其中正確的個數(shù)是( 。
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=6,BC=4,∠B=60°,點E是邊AB上的一點,點F是邊CD上一點,將ABCD沿EF折疊,得到四邊形EFGH,點A的對應點為點H,點D的對應點為點G.

(1)當點H與點C重合時.
①填空:點E到CD的距離是___;
②求證:△BCE≌△GCF;
③求△CEF的面積;
(2)當點H落在射線BC上,且CH=1時,直線EH與直線CD交于點M,請直接寫出△MEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是射線CB上的一個動點,把△DCE沿DE折疊,點C的對應點為C′.
(1)若點C′剛好落在對角線BD上時,BC′=
(2)若點C′剛好落在線段AB的垂直平分線上時,求CE的長;
(3)若點C′剛好落在線段AD的垂直平分線上時,求CE的長.

查看答案和解析>>

同步練習冊答案