【題目】在△ABC中,AB=AC,D是BC的中點(diǎn),以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點(diǎn)F,交AC于點(diǎn)G.
(1)求證:∠AEB=∠ACF;
(2)求證:EF2BF22AC2.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據(jù)等腰三角形的性質(zhì)得出∠BAF=∠CAF,根據(jù)SAS推出△BAF≌△CAF,根據(jù)全等得出∠ABF=∠ACF,即可得出答案;
(2)根據(jù)全等得出BF=CF,求出∠CFG=∠EAG=90°,根據(jù)勾股定理求出EF2+BF2=EF2+CF2=EC2,EC2=AC2+AE2=2AC2,即可得出答案.
(1)證明:如圖,
∵AB=AC,D是BC的中點(diǎn),
∴∠BAF=∠CAF
在△BAF和△CAF中
∴△BAF≌△CAF(SAS),
∴∠ABF=∠ACF
∵AB=AC,△ACE是等腰直角三角形,
∴AB=AE,
∴∠ABE=∠AEB,
∴∠AEB=∠ACF;
(2)證明:∵△BAF≌△CAF,
∴BF=CF
∵∠AGF=∠AEB+∠EAG
∠AGF=∠ACF+∠CFG且∠AEB=∠ACF,
∴∠CFG=∠EAG=90°,
∴EF+BF=EF+CF=EC
∵△ACE是等腰直角三角形,
∴∠CAE=90°,AC=AE,
∴EC2=AC+AE=2AC
即EF+BF=2AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)的圖像與軸相交于點(diǎn),與軸相交于點(diǎn).
(1)求點(diǎn)坐標(biāo)和點(diǎn)坐標(biāo);
(2)點(diǎn)是線段上一點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)在第二象限,且四邊形為菱形,求點(diǎn)坐標(biāo);
(3)在(2)的條件下,點(diǎn)為平面直角坐標(biāo)系中一點(diǎn),以、、、為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出所有滿足條件的點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D在邊AC上,且BD=DA=BC.
(1)如圖1,填空:∠A=_______.
(2)如圖2,若M為線段AC上的點(diǎn),過M作直線MH⊥BD于H,分別交直線AB、BC于點(diǎn)N、E.
①求證:△BNE是等腰三角形;
②試寫出線段AN、CE、CD之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=﹣x2+mx的圖象如圖,對(duì)稱軸為直線x=2,若關(guān)于x的一元二次方程﹣x2+mx﹣t=0(t為實(shí)數(shù))在1<x<5的范圍內(nèi)有解,則t的取值范圍是( )
A.t>﹣5
B.﹣5<t<3
C.3<t≤4
D.﹣5<t≤4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣2x2+bx+c圖象的頂點(diǎn)坐標(biāo)為(3,8),該二次函數(shù)圖象的對(duì)稱軸與x軸的交點(diǎn)為A,M是這個(gè)二次函數(shù)圖象上的點(diǎn),O是原點(diǎn).
(1)不等式b+2c+8≥0是否成立?請(qǐng)說明理由;
(2)設(shè)S是△AMO的面積,求滿足S=9的所有點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).
①以原點(diǎn)O為對(duì)稱中心,畫出△ABC關(guān)于原點(diǎn)O對(duì)稱的△A1B1C1;
②將△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到△AB2C2 , 畫出△AB2C2 , 并求出AC掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”讓中國和世界更緊密,“中歐鐵路”為了安全起見在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈A射線從AM開始順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線從BP開始順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是每秒2度,燈B轉(zhuǎn)動(dòng)的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.
(1)填空:∠BAN=_____°;
(2)若燈B射線先轉(zhuǎn)動(dòng)30秒,燈A射線才開始轉(zhuǎn)動(dòng),在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?
(3)如圖2,若兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)AN之前.若射出的光束交于點(diǎn)C,過C作∠ACD交PQ于點(diǎn)D,且∠ACD=120°,則在轉(zhuǎn)動(dòng)過程中,請(qǐng)?zhí)骄?/span>∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com