如圖,有一個(gè)△ABC,三邊長為AC=6,BC=8,AB=10,沿AD折疊,使點(diǎn)C落在AB邊上的點(diǎn)E處.
(1)試判斷△ABC的形狀,并說明理由.
(2)求線段CD的長.
(1)△ABC是直角三角形,理由如下:
在△ABC中,∵62+82=102,
∴AC2+BC2=AB2
∴△ABC是直角三角形,∠C=90°;

(2)∵△ADE是△ADC沿直線AD翻折而成,
∴∠C=∠DEB=90°,CD=DE,AC=AE=6,
設(shè)CD=x,則DE=x,BD=8-x,
在Rt△BDE中,∵DE2+BE2=BD2,
∴x2+42=(8-x)2
∴x2+16=64-16x+x2,
∴x=3,即CD長為3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)計(jì)算:(4
6
-3
2
)÷2
2
;
(2)如圖,在平面直角坐標(biāo)系中,A(-3,1),B(-2,3),C(0,2),畫出△ABC關(guān)于x軸對(duì)稱△A′B′C′,再畫出△A′B′C′關(guān)于y軸對(duì)稱△A″B″C″,那么△A″B″C″與△ABC有什么關(guān)系,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,如果直線m是多邊形ABCDE的對(duì)稱軸,其中∠A=130°,∠B=110°.那么∠BCD的度數(shù)等于______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,將長為50cm、寬為2cm的矩形,折成下圖所示的圖形并著上灰色,灰色部分的面積為( 。
A.94cm2B.96cm2C.98cm2D.100cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將一張邊長分別為8、6的矩形紙片ABCD折疊,使點(diǎn)C與點(diǎn)A重合,則折痕的長為( 。
A.6B.6.5C.7.5D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將一張正方形的紙片兩次對(duì)折,然后剪下一個(gè)角,如圖所示,則這個(gè)角展開后的圖形是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

【問題提出】如何把n個(gè)正方形拼接成一個(gè)大正方形?
為解決上面問題,我們先從最基本,最特殊的情形入手.對(duì)于邊長為a的兩個(gè)正方形ABCD和EFGH,如何把它們拼接成一個(gè)正方形?
【問題解決】對(duì)于邊長為a的兩個(gè)正方形ABCD和EFGH,按圖所示的方式擺放,在沿虛線BD,EG剪開后,可以按圖中所示的移動(dòng)方式拼接為圖中的四邊形BNED.從拼接的過程容易得到結(jié)論:
①四邊形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
【類比應(yīng)用】
對(duì)于邊長分別為a,b(a>b)的兩個(gè)正方形ABCD和EFGH,按圖所示的方式擺放,連接DE,過點(diǎn)D作DM⊥DE,交AB于點(diǎn)M,過點(diǎn)M作MN⊥DM,過點(diǎn)E作EN⊥DE,MN與EN相交于點(diǎn)N.明四邊形MNED是正方形,并請(qǐng)你用含a,b的代數(shù)式表示正方形MNED的面積;
②如圖,將正方形ABCD和正方形EFGH沿虛線剪開后,能夠拼接為正方形MNED,請(qǐng)簡(jiǎn)略說明你的拼接方法(類比如圖,用數(shù)字表示對(duì)應(yīng)的圖形直接畫在圖中).
【拓廣延伸】對(duì)于n(n是大于2的自然數(shù))個(gè)任意的正方形,能否通過若干次拼接,將其拼接成為一個(gè)正方形?請(qǐng)簡(jiǎn)要說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把一張矩形紙片ABCD沿EF折疊后,點(diǎn)C﹑D分別落在點(diǎn)C′、D′的位置上,EC′交AD于點(diǎn)G.已知∠EFG=55°,那么∠BEG=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

長方形ABCD中,AD=4cm,AB=10cm,按右圖方式折疊,使點(diǎn)B與點(diǎn)D重合,折痕是EF,則DE等于(  )
A.4.2cmB.5.8cm
C.4.2cm或5.8cmD.6cm

查看答案和解析>>

同步練習(xí)冊(cè)答案