【題目】如圖,在矩形ABCD中,AC、BD為對角線,AB2,把BD繞點B逆時針旋轉,得到線段BE,當點E落在線段BA的延長線時,恰有DEAC,連接CE,則陰影部分的面積為_____

【答案】π2

【解析】

如圖,設ACBD于點O.首先證明OAB是等邊三角形,根據S=S弓形DmE+SCDE=S扇形BED-SBED+SADC,計算即可.

如圖,設ACBD于點O

∵四邊形ABCD是矩形,

OBODOAOC,

OADE,

BAAE,

BDBE

ABOBOA,

∴△AOB是等邊三角形,

∴∠EBD60°,

AB2,∠BAD90°,

ADAB2

BECD,

SCDESADC

SS弓形DmE+SCDES扇形BEDSBED+SADC

π2

故答案為π2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABO的直徑,弦CDAB于點H,過CD的延長線上一點EO的切線交AB的延長線于點F,切點為點G,連接AGCD于點K

1)求證:△EKG是等腰三角形;

2)若KG2KDGE,求證:ACEF

3)在(2)的條件下,若tanEAK2,求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3,延長CB至點M,使SABM=,過點BBNAM,垂足為N,O是對角線AC,BD的交點,連接ON,則ON的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把函數(shù)的圖象繞點旋轉,得到新函數(shù)的圖象,我們稱關于點的相關函數(shù).的圖象的對稱軸與軸交點坐標為

1)填空:的值為   (用含的代數(shù)式表示)

2)若,當時,函數(shù)的最大值為,最小值為,且,求的解析式;

3)當時,的圖象與軸相交于兩點(點在點的右側).與軸相交于點.把線段原點逆時針旋轉,得到它的對應線段,若線的圖象有公共點,結合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著西成高鐵的開通,對于加強關中一天水經濟區(qū)與成渝經濟區(qū)的交流合作,促進區(qū)域經濟發(fā)展和提高人民出行質量,具有十分重要的意義.成都某單位計劃組織優(yōu)秀員工利用周末乘坐西成高鐵到西安觀光旅游,計劃游覽著名景點大唐芙蓉園,該景區(qū)團體票價格設置如下:

人數(shù)/

10人以內(含10人)

超過10人但不超過30人的部分

超過30人的部分

單價(元/張)

120

108

96

1)求團體票價與游覽人數(shù)之間的函數(shù)關系式;

2)若該單位購買團體票共花費3456元,且所有人都購買了門票,那么該單位共有多少人游覽了大唐芙蓉園?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線軸,軸分別交于點,拋物線的頂點是,且與軸交于兩點,與軸交于點是拋物線上一個動點,過點于點

求二次函數(shù)的解析式;

當點運動到何處時,線段PG的長取最小值?最小值為多少?

若點是拋物線對稱軸上任意點,點是拋物線上一動點,是否存在點使得以點為頂點的四邊形是菱形?若存在,請你直接寫出點的坐標;若不存在,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小華在晚上由路燈A走向路燈B.當他走到點P時,發(fā)現(xiàn)他身后影子的頂部剛好接觸到路燈A的底部;當他向前再步行12m到達點Q時,發(fā)現(xiàn)他身前影子的頂部剛好接觸到路燈B的底部.已知小華的身高是1.6m,兩個路燈的高度都是9.6m,且APQB.

(1)求兩個路燈之間的距離;

(2)當小華走到路燈B的底部時,他在路燈A下的影長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠有甲種原料,乙種原料,現(xiàn)用兩種原料生產處兩種產品共件,已知生產每件產品需甲種原料,乙種原料,且每件產品可獲得元;生產每件產品甲種原料,乙種原料,且每件產品可獲利潤元,設生產產品 件(產品件數(shù)為整數(shù)件),根據以上信息解答下列問題:

(1)生產兩種產品的方案有哪幾種?

(2)設生產這件產品可獲利元,寫出關于的函數(shù)解析式,寫出(1)中利潤最大的方案,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“大美濕地,水韻鹽城”.某校數(shù)學興趣小組就“最想去的鹽城市旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據調查結果進行數(shù)據整理后繪制出的不完整的統(tǒng)計圖:

請根據圖中提供的信息,解答下列問題:

(1)求被調查的學生總人數(shù);

(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);

(3)若該校共有800名學生,請估計“最想去景點B“的學生人數(shù).

查看答案和解析>>

同步練習冊答案