如圖1,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)M(-2,),且P,-2)為雙曲線上的一點(diǎn),Q為坐標(biāo)平面上一動(dòng)點(diǎn),PA垂直于x軸,QB垂直于y軸,垂足分別是A、B

(1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式;

(2)當(dāng)點(diǎn)Q在直線MO上運(yùn)動(dòng)時(shí),直線MO上是否存在這樣的點(diǎn)Q,使得△OBQ與△OAP面積相等?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)如圖2,當(dāng)點(diǎn)Q在第一象限中的雙曲線上運(yùn)動(dòng)時(shí),作以 OP、OQ為鄰邊的平行四邊形OPCQ,設(shè)點(diǎn)Q的橫坐標(biāo)為n,求平行四邊形OPCQ周長(zhǎng)(周長(zhǎng)用n的代數(shù)式表示),并寫出其最小值.

 

【答案】

(1)(2)(3),

【解析】解:(1)正比例函數(shù)解析式為 ---------------1分

反比例函數(shù)解析式為  ---------------2分  

(2)當(dāng)點(diǎn)Q在直線DO上運(yùn)動(dòng)時(shí),

設(shè)點(diǎn)Q的坐標(biāo)為, ----------------------3分

于是=

×1×2=1

所以有,,解得  --------------------6分

所以點(diǎn)Q的坐標(biāo)為 -------------------7分

(3)因?yàn)樗倪呅?i>OPCQ是平行四邊形,所以OPCQ,OQPC

因?yàn)辄c(diǎn)Q在第一象限中雙曲線上,所以點(diǎn)Q的坐標(biāo)為

由勾股定理可得,-------------------8分

由勾股定理得OP,所以平行四邊形OPCQ周長(zhǎng)是

.····················· 10分

平行四邊形OPCQ周長(zhǎng)的最小值是.-------11分

備注:

而點(diǎn)P,)是定點(diǎn),所以OP的長(zhǎng)也是定長(zhǎng),所以要求平行四邊形OPCQ周長(zhǎng)的最小值就只需求OQ的最小值.

所以當(dāng)時(shí),有最小值4,

又因?yàn)?i>OQ為正值,所以OQ同時(shí)取得最小值,所以OQ有最小值2.

(1)正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)M(-2,-1),設(shè)出正比例函數(shù)和反比例函數(shù)的解析式,運(yùn)用待定系數(shù)法可求它們解析式;

(2)求得三角形OBQ和三角形OAP的面積進(jìn)行解答

(3)因?yàn)樗倪呅?i>OPCQ是平行四邊形,所以OPCQ,OQPC,由勾股定理可得OQ,OP的長(zhǎng),而點(diǎn)P,)是定點(diǎn),所以OP的長(zhǎng)也是定長(zhǎng),所以要求平行四邊形OPCQ周長(zhǎng)的最小值就只需求OQ的最小值,所以當(dāng)時(shí),有最小值4,又因?yàn)?i>OQ為正值,所以OQ同時(shí)取得最小值,所以OQ有最小值2.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正比例函數(shù)y=x與反比例函數(shù)y=
1x
的圖象交于A、B兩點(diǎn).
(1)求出A、B兩點(diǎn)的坐標(biāo);
(2)根據(jù)圖象求使正比例函數(shù)值大于反比例函數(shù)值的x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正比例函數(shù)y1=x,反比例函數(shù)y2=
1
x
,由y1,y2構(gòu)造一個(gè)新函數(shù)y=x+
1
x
其圖象如圖所示.(因其圖精英家教網(wǎng)象似雙鉤,我們稱之為“雙鉤函數(shù)”).給出下列幾個(gè)命題:
①該函數(shù)的圖象是中心對(duì)稱圖形;
②當(dāng)x<0時(shí),該函數(shù)在x=-1時(shí)取得最大值-2;
③y的值不可能為1;
④在每個(gè)象限內(nèi),函數(shù)值y隨自變量x的增大而增大.
其中正確的命題是
 
.(請(qǐng)寫出所有正確的命題的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正比例函數(shù)y=ax(a≠0)的圖象與反比例函致y=
kx
(k≠0)的圖象的一個(gè)交點(diǎn)為A(-1,2-k2),另一個(gè)交點(diǎn)為B,且A、B關(guān)于原點(diǎn)O對(duì)稱,D為OB的中點(diǎn),過點(diǎn)D的線段OB的垂直平分線與x軸、y軸分別交于C、E.
(1)寫出反比例函數(shù)和正比例函數(shù)的解析式;
(2)試計(jì)算△COE的面積是△ODE面積的多少倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•相城區(qū)一模)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)M(-2,-1),且P(-1,-2)為雙曲線上的一點(diǎn).
(1)求出正比例函數(shù)和反比例函數(shù)的關(guān)系式;
(2)觀察圖象,寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若點(diǎn)Q在第一象限中的雙曲線上運(yùn)動(dòng),作以O(shè)P、OQ為鄰邊的平行四邊形OPCQ,求平行四邊形OPCQ周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正比例函數(shù)y1=x,反比例函數(shù)y2=
1
x
,由y1,y2構(gòu)造一個(gè)新函數(shù)y=x+
1
x
,其圖象如圖所示.(因其圖象似雙鉤,我們稱之為“雙鉤函數(shù)”).給出下列幾個(gè)命題:
①該函數(shù)的圖象是中心對(duì)稱圖形;
②當(dāng)x<0時(shí),該函數(shù)在x=-1時(shí)取得最大值-2;
③y的值不可能為1;
④在每個(gè)象限內(nèi),函數(shù)值y隨自變量x的增大而增大.
其中正確的命題是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案