【題目】在探索三角形全等的條件時(shí),老師給出了定長(zhǎng)線段ab,且長(zhǎng)度為b的邊所對(duì)的角為n°(0n90°)小明和小亮按照所給條件分別畫出了圖1中的三角形,他們把兩個(gè)三角形重合在一起(如圖2),其中ABa,BDBCb,發(fā)現(xiàn)它們不全等,但他們對(duì)該圖形產(chǎn)生了濃厚興趣,并進(jìn)行了進(jìn)一步的探究:

(1)當(dāng)n45時(shí)(如圖2),小明測(cè)得∠ABC65°,請(qǐng)根據(jù)小明的測(cè)量結(jié)果,求∠ABD的大;

(2)當(dāng)n≠45時(shí),將△ABD沿AB翻折,得到△ABD′(如圖3),小明和小亮發(fā)現(xiàn)∠D′BC的大小與角度n有關(guān),請(qǐng)找出它們的關(guān)系,并說(shuō)明理由;

(3)如圖4,在(2)問(wèn)的基礎(chǔ)上,過(guò)點(diǎn)BAD′的垂線,垂足為點(diǎn)E,延長(zhǎng)AE到點(diǎn)F,使得EF(AD+AC),連接BF,請(qǐng)判斷△ABF的形狀,并說(shuō)明理由.

【答案】(1)25°;(2)∠D'BC=180°﹣2n°,證明見(jiàn)解析;(3)等腰三角形,證明見(jiàn)解析.

【解析】

(1)先根據(jù)三角形的內(nèi)角和得∠C70°,由等腰三角形的性質(zhì)得∠BDC70°,從而得∠CBD的度數(shù),可得結(jié)論;(2)設(shè)∠BDC=∠Cα,根據(jù)三角形的內(nèi)角和與三角形外角的性質(zhì)分別表示∠ABD和∠DBC,相加可得結(jié)論;(3)作垂線BT,根據(jù)角平分線的性質(zhì)得:BEBT,證明RtABERtABT(HL),得AEAT,證明BEAF的垂直平分線,可得結(jié)論.

解:(1)如圖2,△ABC中,∠A45°,∠ABC65°

∴∠C180°45°65°70°,

BDBC

∴∠BDC=∠C70°,

∴∠DBC180°2×70°40°,

∴∠ABD65°40°25°

(2)如圖3,∠D'BC180°2n°,理由是:

設(shè)∠BDC=∠Cα,

∴∠DBC180°

ADB中,∠BDC=∠DAB+ABD,

αn°+ABD,

∴∠ABDα,

由翻折得:∠ABD'=∠ABDα,

∴∠D'BC=∠D'BD+DBC2ABD+DBC2(αn°)+(180°2α)180°2n°;

(3)ABF是等腰三角形,且BFAB,理由是:

如圖4,過(guò)BBTACT,

由折疊得:∠D'BC=∠DAB,

BEAF,

BEBT,

RtABERtABT中, ,

RtABERtABT(HL)

AEAT,

ADAD'

DTD'ETC,

AT,

EF

ATEFAE,

BEAF,即BEAF的垂直平分線,

BFAB,

∴△ABF是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ ABC 和△ADE都是等邊三角形,點(diǎn) B ED 的延長(zhǎng)線上.

1)求證:△ABD≌△ACE

2)求證:AECE=BE

3)求∠BEC 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC是邊長(zhǎng)為5cm的等邊三角形,點(diǎn)PQ分別從頂點(diǎn)A,B同時(shí)出發(fā),沿線段AB,BC運(yùn)動(dòng),且它們的是速度都為1厘米/秒.當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),PQ兩點(diǎn)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).

1)當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),BQ的長(zhǎng)為_____厘米,BP的長(zhǎng)為______厘米.(用含t的式子表示)

2)當(dāng)t為何值時(shí),PBQ是直角三角形.

3)如圖2,連接AQ、CP,相交于點(diǎn)M,則點(diǎn)PQ在運(yùn)動(dòng)的過(guò)程中,∠CMQ會(huì)變化嗎?若變化,則說(shuō)明理由;若不變,請(qǐng)求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAE,BAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,BC邊上的高AG平分∠BAC.

(1)如圖1,求證:ABAC.

(2)如圖2,點(diǎn)D、E在△ABC的邊BC上,ADAE,BC10cm,DE6cm,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE

3)如圖3,在(2)的條件下,連接CGAB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)是2,M是高CH所在直線上的一個(gè)動(dòng)點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接MN,則在點(diǎn)M運(yùn)動(dòng)過(guò)程中,線段MN長(zhǎng)度的最小值是(  )

A. B. 1 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過(guò)A、B兩點(diǎn),并與過(guò)A點(diǎn)的直線y=﹣x﹣1交于點(diǎn)C.

(1)求拋物線解析式及對(duì)稱軸;

(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使四邊形ACPO的周長(zhǎng)最?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)點(diǎn)My軸右側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)M作直線AC的垂線,垂足為N.問(wèn):是否存在這樣的點(diǎn)N,使以點(diǎn)M、N、C為頂點(diǎn)的三角形與AOC相似,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過(guò)A、B兩點(diǎn),并與過(guò)A點(diǎn)的直線y=﹣x﹣1交于點(diǎn)C.

(1)求拋物線解析式及對(duì)稱軸;

(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使四邊形ACPO的周長(zhǎng)最。咳舸嬖,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)點(diǎn)My軸右側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)M作直線AC的垂線,垂足為N.問(wèn):是否存在這樣的點(diǎn)N,使以點(diǎn)M、N、C為頂點(diǎn)的三角形與AOC相似,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案