下列方程中是一元一次方程的是(  )
A、2x+3y=1
B、x2+3x-1=0
C、3x-
1
x
=3
D、6x-5=4x+3
分析:若一個整式方程經(jīng)過化簡變形后,只含有一個未知數(shù),并且未知數(shù)的次數(shù)都是1,系數(shù)不為0,則這個方程是一元一次方程.根據(jù)此定義,對四個選項逐一進行判斷即可.
解答:解:A、含有兩個未知數(shù),故不是一元一次方程;
B、未知數(shù)的次數(shù)是2不是1,故不是一元一次方程;
C、分母中含有字母,不是整式方程,故不是一元一次方程;
D、符合一元一次方程的定義.
故選D.
點評:判斷一元一次方程,第一步先看是否是方程,第二步化簡后是否只含有一個未知數(shù),且未知數(shù)的次數(shù)是1.此類題目可嚴(yán)格按照定義解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

教材或資料會出現(xiàn)這樣的題目:把方程
1
2
x2-x=2化為一元二次方程的一般形式,并寫出它的二次項系數(shù)、一次項系數(shù)和常數(shù)項.
現(xiàn)在把上面的題目改編為下面的兩個小題,請解答.
(1)下列式子中,有哪幾個是方程
1
2
x2-x=2所化的一元二次方程的一般形式?(答案只寫序號)
1
2
x2-x-2=0;②-
1
2
x2+x+2=0;③x2-2x=4;④-x2+2x+4=0;⑤
3
x2-2
3
x-4
3
=0.
(2)方程
1
2
x2-x=2化為一元二次方程的一般形式,它的二次項系數(shù),一次項系數(shù),常數(shù)項之間具有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列命題中真命題的是( 。
A、方程是x2+
1
x
+1=0
一元二次方程
B、一元二次方程是整式方程
C、方程3x2-4=2x的二次項系數(shù)為3,一次項系數(shù)為3,常數(shù)項為-4
D、方程3x2+7x-9=0的兩根之和為-7,兩根之積為-9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列方程中,是一元一次不等式的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

下列方程中,是一元一次不等式的是


  1. A.
    x+2y≥5
  2. B.
    數(shù)學(xué)公式
  3. C.
    4x=5
  4. D.
    x<1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

一次數(shù)學(xué)興趣小組的活動課上,師生有下面的一段對話,請你閱讀完后再解答.

老師:同學(xué)們,今天我們來探索如下方程的解法:

學(xué)生甲:老師,這個方程先去括號,在合并同類項,行嗎?

老師:這樣原方程可整理為,次數(shù)變成了4次,用現(xiàn)有的知識無法解答.同學(xué)們再觀察,看看這個方程有什么特點?

學(xué)生乙:老師,我發(fā)現(xiàn)方程中是整體出現(xiàn)的,最好不要去括號!

教師:很好,我國我們把看成一個整體,用表示,即,那么原方程就變成了

全體學(xué)生:(同學(xué)們都特別高興)噢,這不是我們最熟悉的一元二次方程嗎?

老師:大家真會觀察和思考,太棒了!顯然一元二次方程的根是,那么就有

學(xué)生丙:對啦,再解這兩個方程,可得原方程的根是,.嗬,有這么多解!

老師:同學(xué)們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低方程的次數(shù),這是一種重要的轉(zhuǎn)化方法.

全體學(xué)生:OK,換元法真神奇!

現(xiàn)在,請你用換元法解下列分式方程:

查看答案和解析>>

同步練習(xí)冊答案