【題目】某種植基地種植一種蔬菜,它的成本是每千克2元,售價是每千克3元,年銷量為10萬千克.基地準備拿出一定的資金作綠色開發(fā),若每年綠色開發(fā)投入的資金為(萬元),該種蔬菜的年銷量將是原年銷量的倍,的關(guān)系如下表:

(萬元)

0

1

2

3

4

5

1

15

18

19

18

15

1)猜想之間的函數(shù)類型是________函數(shù),求出該函數(shù)的表達式并驗證;

2)求年利潤(萬元)與綠色開發(fā)投入的資金(萬元)之間的函數(shù)關(guān)系式,當(dāng)綠色開發(fā)投入的資金不低于3萬元,又不超過5萬元時,求此時年利潤(萬元)的最大值;

(注:年利潤銷售總額-成本費-綠色開發(fā)投入的資金)

3)若提高種植人員的獎金,發(fā)現(xiàn)又增加一部分年銷量,經(jīng)調(diào)查發(fā)現(xiàn):再次增加的年銷量(萬千克)與每年提高種植人員的獎金(萬元)之間滿足,若基地將投入5萬元用于綠色開發(fā)和提高種植人員的獎金,應(yīng)怎樣分配這筆資金才能使總年利潤達到17萬元且綠色開發(fā)投入大于獎金投入?(

【答案】1)二次,,答案見解析;(2,16萬元;(3)綠色開發(fā)的資金為37萬元,獎金為13萬元.

【解析】

解:(1)二次,

設(shè)的函數(shù)關(guān)系式為,

由題意得:

解得,

把其余各點代入也符合所求的式子,

的函數(shù)關(guān)系式為:;

2

拋物線的對稱軸為,

∵拋物線開口向下,當(dāng)時,的增大而減小,

∴當(dāng)時,最大,為16萬元;

3)設(shè)用于綠色開發(fā)的資金為萬元,則用于提高獎金的資金為萬元,

提高獎金增加的年利潤為,

所以總利潤

∵要使年利潤達到17萬元,

,

整理得,

解得,

∵綠色開發(fā)投入要大于獎金投入,

,

∴用于綠色開發(fā)的資金為37萬元,獎金為13萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在小水池旁有一盞路燈,已知支架AB的長是0.8m,A端到地面的距離AC4m,支架AB與燈柱AC的夾角為65°.小明在水池的外沿D測得支架B端的仰角是45°,在水池的內(nèi)沿E測得支架A端的仰角是50°(點C、E、D在同一直線上),求小水池的寬DE.(結(jié)果精確到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】,兩地相距.甲、乙兩人都由地去地,甲騎自行車,平均速度為;乙乘汽車,平均速度為,且比甲晚出發(fā).設(shè)甲的騎行時間為.

1)根據(jù)題意,填寫下表:

時間

地的距離

0.5

1.8

______

甲與地的距離(

5

______

20

乙與地的距離(

0

12

______

2)設(shè)甲,乙兩人與地的距離為,寫出關(guān)于的函數(shù)解析式;

3)設(shè)甲,乙兩人之間的距離為,當(dāng)時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在一次打籃球時,籃球傳出后的運動路線為如圖所示的拋物線以小明所站立的位置為原點O建立平面直角坐標系,籃球出手時在O點正上方1m處的點P.已知籃球運動時的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式y=-x2+x+c.

1求y與x之間的函數(shù)表達式

2球在運動的過程中離地面的最大高度

3小亮手舉過頭頂跳起后的最大高度為BC=2.5m若小亮要在籃球下落過程中接到球,求小亮離小明的最短距離OB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進價和售價如下表所示:

A

B

進價(萬元/套)

1.5

1.2

售價(萬元/套)

1.65

1.4

該商場計劃購進兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。

(毛利潤=(售價 - 進價)×銷售量)

(1)該商場計劃購進A,B兩種品牌的教學(xué)設(shè)備各多少套?

(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進數(shù)量,增加B種設(shè)備的購進數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍。若用于購進這兩種教學(xué)設(shè)備的總資金不超過69萬元,問A種設(shè)備購進數(shù)量至多減少多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,BC邊上的高ADAC邊上的高BE交于點F,且∠BAC=45°,BD=6,CD=4,則ABC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級學(xué)生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進價為8/千克,下面是他們在活動結(jié)束后的對話.

小麗:如果以10/千克的價格銷售,那么每天可售出300千克.

小強:如果每千克的利潤為3元,那么每天可售出250千克.

小紅:如果以13/千克的價格銷售,那么每天可獲取利潤750元.

【利潤=(銷售價-進價)銷售量】

1)請根據(jù)他們的對話填寫下表:

銷售單價x(元/kg

10

11

13

銷售量ykg




2)請你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x0)的函數(shù)關(guān)系式;

3)設(shè)該超市銷售這種水果每天獲取的利潤為W元,求Wx的函數(shù)關(guān)系式.當(dāng)銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實施后,實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務(wù).

(1)問實際每年綠化面積多少萬平方米?

(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實際平均每年綠化面積至少還要增加多少萬平方米?

查看答案和解析>>

同步練習(xí)冊答案