【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,4),B(﹣4,1),C(0,1).

(1)畫出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);

(2)畫出以C1為旋轉(zhuǎn)中心,將△A1B1C1逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;

(3)尺規(guī)作圖:連接A1A2,在C1A2邊上求作一點(diǎn)P,使得點(diǎn)PA1A2的距離等于PC1的長(zhǎng)(保留作圖痕跡,不寫作法);

(4)請(qǐng)直接寫出∠C1A1P的度數(shù).

【答案】(1)C1(0,﹣1);圖見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析;(4)22.5°.

【解析】

(1)分別作出A、B、C三點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)A1、B1、C1即可;

(2)分別作出A1、B1、C1的對(duì)應(yīng)點(diǎn)A2、B2、C2即可;

(3)作∠C1A1A2的角平分線交C1A2P即可;

(4)根據(jù)角平分線的定義即可解決問(wèn)題;

解:(1A1B1C1如圖所示,并寫出點(diǎn)C1的坐標(biāo)(0,﹣1);

(2)A2B2C2如圖所示;

3)點(diǎn)P如圖所示;

4)請(qǐng)直接寫出∠C1A1P的度數(shù)為22.5°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的內(nèi)切圓與三邊分別相切于點(diǎn)D、E、F,則下列等式:

①∠EDFB;

2EDFAC;

2AFEDEDF;

④∠AEDBFECDF=180°,其中成立的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四個(gè)均由十六個(gè)小正方形組成的正方形網(wǎng)格中,各有一個(gè)三角形ABC,那么這四個(gè)三角形中,不是直角三角形的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形EFGH的頂點(diǎn)在邊長(zhǎng)為3的正方形ABCD邊上,若AE=x,正方形EFGH的面積為y,則yx的函數(shù)關(guān)系式為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是(  )

A.5B.25C.10+5D.35

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名射擊運(yùn)動(dòng)員中進(jìn)行射擊比賽,兩人在相同條件下各射擊10次,射擊的成績(jī)?nèi)鐖D所示.

根據(jù)圖中信息,回答下列問(wèn)題:

(1)甲的平均數(shù)是___________,乙的中位數(shù)是______________;

(2)分別計(jì)算甲、乙成績(jī)的方差,并從計(jì)算結(jié)果來(lái)分析,你認(rèn)為哪位運(yùn)動(dòng)員的射擊成績(jī)更穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知ABC三個(gè)頂點(diǎn)分別為A﹣12)、B21)、C4,5).

1)畫出ABC關(guān)于x對(duì)稱的A1B1C1

2)以原點(diǎn)O為位似中心,在x軸的上方畫出A2B2C2,使A2B2C2ABC位似,且位似比為2,并求出A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:某物業(yè)公司接收管理某小區(qū)后,準(zhǔn)備進(jìn)行綠化建設(shè),現(xiàn)要將一塊四邊形的空地(如圖5,四邊形ABCD)鋪上草皮,但由于年代久遠(yuǎn),小區(qū)規(guī)劃書上該空地的面積數(shù)據(jù)看不清了,僅僅留下兩條對(duì)角線AC,BD的長(zhǎng)度分別為20cm,30cm及夾角∠AOB60°,你能利用這些數(shù)據(jù),幫助物業(yè)人員求出這塊空地的面積嗎?

問(wèn)題顯然,要求四邊形ABCD的面積,只要求出ABDBCD(也可以是ABCACD)的面積,再相加就可以了.

建立模型:我們先來(lái)解決較簡(jiǎn)單的三角形的情況:

如圖1,ABC中,OBC上任意一點(diǎn)(不與B,C兩點(diǎn)重合),連接OA,OA=a,BC=b,AOB=α(αOABC所夾較小的角),試用a,b,α表示ABC的面積.

解:如圖2,作AMBC于點(diǎn)M,

∴△AOM為直角三角形.

又∵∠AOB=α,sinα=AM=OAsinα

∴△ABC的面積=BCAM=BCOAsinα=absinα.

問(wèn)題解決:請(qǐng)你利用上面的方法,解決物業(yè)公司的問(wèn)題.

如圖3,四邊形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),已知AC=20m,BD=30m,AOB=60°,求四邊形ABCD的面積.(寫出輔助線作法和必要的解答過(guò)程)

新建模型:若四邊形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),已知AC=a,BD=b,AOB=α(αOABC所夾較小的角),直接寫出四邊形ABCD的面積=   

模型應(yīng)用:如圖4,四邊形ABCD中,AB+CD=BC,ABC=BCD=60°,已知AC=a,則四邊形ABCD的面積為多少?(新建模型中的結(jié)論可直接利用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解家長(zhǎng)對(duì)學(xué)生在校帶手機(jī)現(xiàn)象的看法,某校九年級(jí)興趣小組隨機(jī)調(diào)查了該校學(xué)生家長(zhǎng)若干名,并對(duì)調(diào)查結(jié)果進(jìn)行整理繪制如下不完整的統(tǒng)計(jì)圖

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題

(1)這次接受調(diào)查的家長(zhǎng)總?cè)藬?shù)為________人;

(2)在扇形統(tǒng)計(jì)圖中,很贊同所對(duì)應(yīng)的扇形圓心角的度數(shù)

(3)若在這次接受調(diào)查的家長(zhǎng)中,隨機(jī)抽出一名家長(zhǎng),恰好抽到無(wú)所謂的家長(zhǎng)概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案