【題目】如圖,△ABC中,∠B=90°,AB=6cm,BC=8cm,點P從點A開始,沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動(點Q到達點C運動停止).如果點P,Q分別從點A,B同時出發(fā)t秒(t>0)
(1)t為何值時,PQ=6cm?
(2)t為何值時,可使得△PBQ的面積等于8cm2?
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,BC是⊙O的直徑,點A在⊙O上,AD⊥BC垂足為D,弧AE=弧AB,BE分別交AD、AC于點F、G.
(1)判斷△FAG的形狀,并說明理由.
(2)如圖②若點E與點A在直徑BC的兩側(cè),BE、AC的延長線交于點G,AD的延長線交BE于點F,其余條件不變(1)中的結(jié)論還成立嗎?請說明理由
(3)在(2)的條件下,若BG=26,BD-BF=7,求AB的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=x+2的圖象分別交x軸,y軸于A、B兩點,⊙O1過以OB為邊長的正方形OBCD的四個頂點,兩動點P、Q同時從點A出發(fā)在四邊形ABCD上運動,其中動點P以每秒個單位長度的速度沿A→B→A運動后停止;動點Q以每秒2個單位長度的速度沿A→O→D→C→B運動,AO1交y軸于E點,P、Q運動的時間為t(秒).
(1)求E點的坐標和S△ABE的值;
(2)試探究點P、Q從開始運動到停止,直線PQ與⊙O1有哪幾種位置關(guān)系,并求出對應的運動時間t的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人用如圖的兩個分格均勻的轉(zhuǎn)盤A、B做游戲,游戲規(guī)則如下:分別轉(zhuǎn)動兩個轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針分別指向一個數(shù)字(若指針停止在等份線上,那么重轉(zhuǎn)一次,直到指針指向某一數(shù)字為止).用所指的兩個數(shù)字相乘,如果積是奇數(shù),則甲獲勝;如果積是偶數(shù),則乙獲勝.請你解決下列問題:
(1)用列表格或畫樹狀圖的方法表示游戲所有可能出現(xiàn)的結(jié)果.
(2)求甲、乙兩人獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=10,BC=6.點P從點A出發(fā),沿折線AB—BC向終點C運動,在AB上以每秒5個單位長度的速度運動,在BC上以每秒3個單位長度的速度運動.點Q從點C出發(fā),沿CA方向以每秒2個單位長度的速度運動.點P、Q兩點同時出發(fā),當點P停止時,點Q也隨之停止.設(shè)點P運動的時間為t秒.
(1)求線段AC的長.
(2)求線段BP的長.(用含t的代數(shù)式表示)
(3)設(shè)△APQ的面積為S,求S與t之間的函數(shù)關(guān)系式.
(4)連結(jié)PQ,當PQ與△ABC的一邊平行或垂直時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解本校學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,課題小組隨機選取該校部分學生進行了問卷調(diào)査(問卷調(diào)査表如圖1所示),并根據(jù)調(diào)查結(jié)果繪制了圖2、圖3兩幅統(tǒng)計圖(均不完整),請根據(jù)統(tǒng)計圖解答下列問題.
(1)本次接受問卷調(diào)查的學生有________名.
(2)補全條形統(tǒng)計圖.
(3)扇形統(tǒng)計圖中B類節(jié)目對應扇形的圓心角的度數(shù)為________.
(4)該校共有2000名學生,根據(jù)調(diào)查結(jié)果估計該校最喜愛新聞節(jié)目的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形OABC的頂點O在坐標原點,頂點A在x軸上,∠B=120°,OA=4,將菱形OABC繞原點順時針旋轉(zhuǎn)105°至OA′B′C′的位置,則點B′的坐標為( )
A. (2,﹣2)B. (,-)C. (2,﹣2)D. (,-)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當AB=BC時,四邊形ABCD是菱形
B. 當AC⊥BD時,四邊形ABCD是菱形
C. 當∠ABC=90°時,四邊形ABCD是矩形
D. 當AC=BD時,四邊形ABCD是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新定義:關(guān)于x的一元二次方程a1(x﹣m)2+k=0與a2(x﹣m)2+k=0稱為“同族二次方程”.如2(x﹣3)2+4=0與3(x﹣3)2+4=0是“同族二次方程”.現(xiàn)有關(guān)于x的一元二次方程2(x﹣1)2+1=0與(a+2)x2+(b﹣4)x+8=0是“同族二次方程”,那么代數(shù)式ax2+bx+2023能取的最小值是( 。
A. 2016B. 2018C. 2023D. 2028
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com