【題目】兩邊為和的直角三角形的內(nèi)切圓半徑為________.
【答案】或
【解析】
畫出圖形,設(shè)直角三角形ACB的內(nèi)切圓的圓心是O,分別與邊AC、BC、AB相切于D、E、F,連接OD、OE,根據(jù)切線的性質(zhì)推出∠ODC=∠C=∠OEC=90°,OD=OE,推出四邊形ODCE是正方形,推出CD=CE=OD=OE=R,根據(jù)切線長定理得出AD=AF,BF=BE,CD=CE,①當(dāng)AC=4,BC=3時,由勾股定理求出AB=5,根據(jù)AF+BF=5得出4-R+3-R=5,求出即可②當(dāng)AB=4,BC=3時,由勾股定理求出AC=,同法可求出R.
解:設(shè)直角三角形ACB的內(nèi)切圓的圓心是O,分別與邊AC、BC、AB相切于D、E、F,連接OD、OE,
則∠ODC=∠C=∠OEC=90°,
即四邊形ODCE是矩形,
∵OD=OE,
∴矩形ODCE是正方形,
∴OD=OE=CD=CE,
設(shè)⊙O的半徑是R,
則OD=OE=DC=CE=R,
由切線長定理得:AD=AF,BF=BE,CD=CE,
①當(dāng)AC=4,BC=3時,由勾股定理得:AB=5,
∵AF+BF=5,
∴AD+BE=5,
∴4-R+3-R=5,
解得R=1;
②當(dāng)AB=4,BC=3時,由勾股定理得:AC=,
∵AF+BF=4,
∴AD+BE=4,
∴-R+3-R=4,
解得R=.
故答案為:1或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=5,BC=3,點P、Q分別在邊BC、AC上,PQ∥AB,把△PCQ繞點P旋轉(zhuǎn)得到△PDE(點C、Q分別與點D、E對應(yīng)),點D落在線段PQ上,若AD平分∠BAC,則CP的長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C是直角,點A在直線MN上,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.
(1)如圖1,當(dāng)C,B兩點均在直線MN的上方時,
①直接寫出線段AE,BF與CE的數(shù)量關(guān)系.
②猜測線段AF,BF與CE的數(shù)量關(guān)系,不必寫出證明過程.
(2)將等腰直角△ABC繞著點A順時針旋轉(zhuǎn)至圖2位置時,線段AF,BF與CE又有怎樣的數(shù)量關(guān)系,請寫出你的猜想,并寫出證明過程.
(3)將等腰直角△ABC繞著點A繼續(xù)旋轉(zhuǎn)至圖3位置時,BF與AC交于點G,若AF=3,BF=7,直接寫出FG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一座鋼結(jié)構(gòu)橋梁的框架是△ABC,水平橫梁BC長18米,中柱AD高6米,其中D是BC的中點,且AD⊥BC.
(1)求sinB的值;
(2)現(xiàn)需要加裝支架DE、EF,其中點E在AB上,BE=2AE,且EF⊥BC,垂足為點F,求支架DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).
(1)求此拋物線的解析式.
(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的切線,點C在直徑AB的延長線上.
(1)求證:∠CAD=∠BDC;
(2)若BD=AD,AC=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O.AC=8cm,BD=6cm,點P為AC上一動點,點P以1cm/的速度從點A出發(fā)沿AC向點C運動.設(shè)運動時間為ts,當(dāng)t=_____s時,△PAB為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=6cm,∠ADC=60°,點E從點D出發(fā),以1cm/s的速度沿射線DA運動,同時點F從點A出發(fā),以1cm/s的速度沿射線AB運動,連接CE、CF和EF,設(shè)運動時間為t(s).
(1)當(dāng)t=3s時,連接AC與EF交于點G,如圖①所示,則EF= cm;
(2)當(dāng)E、F分別在線段AD和AB上時,如圖②所示,
①求證:△CEF是等邊三角形;
②連接BD交CE于點G,若BG=BC,求EF的長和此時的t值.
(3)當(dāng)E、F分別運動到DA和AB的延長線上時,如圖③所示,若EF=3cm,直接寫出此時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點P是雙曲線y=上的一個動點,連結(jié)OP,若將線段OP繞點O逆時針旋轉(zhuǎn)90°得到線段OQ,則經(jīng)過點Q的雙曲線的表達式為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com