精英家教網 > 初中數學 > 題目詳情

【題目】計算:|﹣|﹣(﹣π)0﹣sin30°+(﹣﹣2

【答案】解:原式=﹣1﹣+4
=3.
【解析】先分別根據絕對值的性質、零指數冪及負整數冪的計算法則、特殊角的三角函數值分別計算出各數的值,再根據實數混合運算的法則進行計算即可.
【考點精析】本題主要考查了零指數冪法則和整數指數冪的運算性質的相關知識點,需要掌握零次冪和負整數指數冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數);aman=am+n(m、n是正整數);(amn=amn(m、n是正整數);(ab)n=anbn(n是正整數);am/an=am-n(a不等于0,m、n為正整數);(a/b)n=an/bn(n為正整數)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】解不等式組 ,并在數軸上表示不等式組的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們知道:垂直于弦的直徑平分這條弦,并且平分這條弦所對的兩條;平分弧的直徑垂直平分這條弧所對的弦.你可以利用這一結論解決問題:
如圖,點P在以MN(南北方向)為直徑的⊙O上,MN=8,PQ⊥MN交⊙O于點Q,垂足為H,PQ≠MN,弦PC、PD分別交MN于點E、F,且PE=PF.

(1)比較 的大。
(2)若OH=2 ,求證:OP∥CD;
(3)設直線MN、CD相交所成的銳角為α,試確定cosα= 時,點P的位置.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐標系中.
(1)若函數y1的圖象過點(﹣1,0),函數y2的圖象過點(1,2),求a,b的值.
(2)若函數y2的圖象經過y1的頂點.
①求證:2a+b=0;
②當1<x< 時,比較y1 , y2的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數y=ax+b與反比例函數y=在同一平面直角坐標系內的圖象大致為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,與BA的延長線交于點D,DE⊥PO交PO延長線于點E,連接PB,∠EDB=∠EPB.

(1)求證:PB是的切線;
(2)若PB=6,DB=8,求⊙O的半徑

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx﹣3a經過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.

(1)求此二次函數解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一艘海輪在A點時測得燈塔C在它的北偏東42°方向上,它沿正東方向航行80海里后到達B處,此時燈塔C在它的北偏西55°方向上.

(1)求海輪在航行過程中與燈塔C的最短距離(結果精確到0.1);
(2)求海輪在B處時與燈塔C的距離(結果保留整數).
(參考數據:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明購買了一部新手機,到某通訊公司咨詢移動電話資費情況,準備辦理入網手續(xù),該通訊公司工作人員向他介紹兩種不同的資費方案:

方案代號

月租費(元)

免費時間(分)

超過免費時間的通話費(元/分)

10

0

0.20

30

80

0.15


(1)分別寫出方案一、二中,月話費(月租費與通話費的總和)y(單位:元)與通話時間x(單位:分)的函數關系式;
(2)畫出(1)中兩個函數的圖象;
(3)若小明月通話時間為200分鐘左右,他應該選擇哪種資費方案最省錢.

查看答案和解析>>

同步練習冊答案