【題目】如圖,將ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE,求證:四邊形ABEC是矩形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)先由已知平行四邊形ABCD得出AB∥DC,AB=DC,∠ABF=∠ECF,從而證得△ABF≌△ECF;
(2)由(1)得的結(jié)論先證得四邊形ABEC是平行四邊形,通過角的關(guān)系得出FA=FE=FB=FC,AE=BC,得證.
證明:(1)∵四邊形ABCD是平行四邊形,
∴AB∥DC,AB=DC,
∴∠ABF=∠ECF,
∵EC=DC,∴AB=EC,
在△ABF和△ECF中,
∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,
∴△ABF≌△ECF(AAS).
(2)∵AB=EC,AB∥EC,
∴四邊形ABEC是平行四邊形,
∴FA=FE,FB=FC,
∵四邊形ABCD是平行四邊形,
∴∠ABC=∠D,
又∵∠AFC=2∠D,
∴∠AFC=2∠ABC,
∵∠AFC=∠ABC+∠BAF,
∴∠ABC=∠BAF,
∴FA=FB,
∴FA=FE=FB=FC,
∴AE=BC,
∴四邊形ABEC是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A(-1,0).過點(diǎn)A作直線y=x+c與拋物線交于點(diǎn)D,動(dòng)點(diǎn)P在直線y=x+c上,從點(diǎn)A出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)D運(yùn)動(dòng),過點(diǎn)P作直線PQ∥y軸,與拋物線交于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)直接寫出b,c的值及點(diǎn)D的坐標(biāo);
(2)點(diǎn) E是拋物線上一動(dòng)點(diǎn),且位于第四象限,當(dāng)△CBE的面積為6時(shí),求出點(diǎn)E 的坐標(biāo);
(3)在線段PQ最長(zhǎng)的條件下,點(diǎn)M在直線PQ上運(yùn)動(dòng),點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)D、M、N為頂點(diǎn)的三角形為等腰直角三角形時(shí),請(qǐng)求出此時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=4,BC=3,點(diǎn)D是AB邊上一點(diǎn)(不與A、B重合),若過點(diǎn)D的直線截得的三角形與△ABC相似,并且平分△ABC的周長(zhǎng),則AD的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,點(diǎn)A1,A2,A3,…都在x軸上,點(diǎn)C1,C2,C3,…都在直線y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,則點(diǎn)C6的坐標(biāo)是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為5,點(diǎn)E、F分別在BC和CD邊上,分別連接AE、AF、EF,若∠EAF=45°,則△CEF的周長(zhǎng)是( )
A.6+2B.8.5C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點(diǎn),且∠EAF=45°,EC=1,將△ADE繞點(diǎn)A沿順時(shí)針方向旋轉(zhuǎn)90°后與△ABG重合,連接EF,過點(diǎn)B作BM∥AG,交AF于點(diǎn)M,則以下結(jié)論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一汽車租賃公司擁有某種型號(hào)的汽車100輛.公司在經(jīng)營(yíng)中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:
x | 3000 | 3200 | 3500 | 4000 |
y | 100 | 96 | 90 | 80 |
(1)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.
(2)已知租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.用含x(x≥3000)的代數(shù)式填表:
租出的車輛數(shù) | 未租出的車輛數(shù) | ||
租出每輛車的月收益 | 所有未租出的車輛每月的維護(hù)費(fèi) |
(3)若你是該公司的經(jīng)理,你會(huì)將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請(qǐng)求出公司的最大月收益是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸是直線x=﹣2.關(guān)于下列結(jié)論:①ab<0;②b2﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax2+bx=0的兩個(gè)根為x1=0,x2=﹣4,其中正確的結(jié)論有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c過點(diǎn)A(3, 0)、點(diǎn)B(0, 3).點(diǎn)M(m, 0)在線段OA上(與點(diǎn)A、O不重合),過點(diǎn)M作x軸的垂線與線段AB交于點(diǎn)P,與拋物線交于點(diǎn)Q,聯(lián)結(jié)BQ.
(1)求拋物線表達(dá)式;
(2)聯(lián)結(jié)OP,當(dāng)∠BOP=∠PBQ時(shí),求PQ的長(zhǎng)度;
(3)當(dāng)△PBQ為等腰三角形時(shí),求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com