【題目】(1)在平面直角坐標系中,OABC的邊OC落在x軸的正半軸上,且點C(4,0),B(6,2),直線y=2x+b將OABC的面積平分,則b=_______.
(2)在平面直角坐標系中,直線y=2x+3關于原點對稱的直線的表達式為__________.
【答案】-5; y=2x-3.
【解析】
(1)先確定OABC對角線交點坐標,再代入y=2x+b中,即可求出b的值;
(2)根據兩條直線關于原點對稱,則這兩條直線平行,即k的值不變. 與y軸的交點關于原點對稱,即b的值互為相反數,即可得出答案.
解:(1)在OABC中,
∵邊OC落在x軸的正半軸上,且點C(4,0),B(6,2),
∴對角線交點的坐標,即線段OB的中心坐標為(3,1),
∵直線y=2x+b將OABC的面積平分,
∴直線y=2x+b過點(3,1),
把(3,1)代入y=2x+b得,
,
解得,b=-5,
故答案為:-5;
(2)設與直線y=2x+3關于原點對稱的直線的解析式為y=kx+b,
∵這兩條直線關于原點對稱,
∴這兩條直線平行,即k=2,
∵這兩條直線與y軸的交點關于原點對稱,
∴b=-3,
∴y=2x-3.
故答案為:y=2x-3.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點P在AC上,PM交AB于點E,PN交BC于點F,當PE=2PF時,AP=________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BO在x軸的負半軸上,∠BOC=60°,頂點C的坐標為(m,3 ),反比例函數y= 的圖象與菱形對角線AO交D點,連接BD,當DB⊥x軸時,k的值是( )
A.6
B.﹣6
C.12
D.﹣12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點D是 上一點,且∠BDE=∠CBE,BD與AE交于點F.
(1)求證:BC是⊙O的切線;
(2)若BD平分∠ABE,求證:DE2=DFDB;
(3)在(2)的條件下,延長ED,BA交于點P,若PA=AO,DE=2,求PD的長和⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】體育課上,老師為了解女學生定點投籃的情況,隨機抽取8名女生進行每人4次定點投籃的測試,進球數的統計如圖所示.
(1)求女生進球數的平均數、中位數;
(2)投球4次,進球3個以上(含3個)為優(yōu)秀,全校有女生1200人,估計為“優(yōu)秀”等級的女生約為多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標
(3)直線l經過A、C兩點,點Q在拋物線位于y軸左側的部分上運動,直線m經過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,數軸上點A、C對應的數分別為a、c,且a、c,滿足|a+4|+(c﹣1)2018=0,點O對應的數為0,點B對應的數為﹣3.
(1)求數a、c的值;
(2)點A,B沿數軸同時出發(fā)向右勻速運動,點A速度為2個單位長度/秒,點B速度為1個單位長度/秒,幾秒后,點A追上點B;
(3)在(2)的條件下,若運動時間為t秒,運動過程中,當A,B兩點到原點O的距離相等時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某食品廠從生產的袋裝食品中抽出樣品20袋,檢測每袋的質量是否符合標準,超過或不足的部分分別用正、負數來表示,記錄如下表:
與標準質量的差值 | 5 | 2 | 0 | 1 | 3 | 6 |
袋 數 | 1 | 4 | 3 | 4 | 5 | 3 |
(1)這批樣品的平均質量比標準質量多還是少?多或少幾克?
(2)若每袋標準質量為450克,則抽樣檢測的總質量是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com