(1)解方程解
(2)將五個(gè)空格填上恰當(dāng)?shù)臄?shù),使得每一行、每一列、每一對角線3個(gè)數(shù)的和都為0.
            
      -  
            

【答案】分析:(1)用加減消元法消去y;(2)根據(jù)互為相反數(shù)的兩個(gè)數(shù)的和為0.
解答:解:(1)由①×,得3x-y=-2.③
②×,得5x-y=0.④
④-③,得2x=2,x=
把x=代入②,得-y=0,y=

(2)
        --
--       0   +
        --

點(diǎn)評:解二元一次方程組的基本方法是代入消元法和加減消元法;特別注意表示一個(gè)式子的相反數(shù)時(shí),只需在式子的整體前面加上負(fù)號,再去括號.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料,解答問題:為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1視為一個(gè)整體,然后設(shè)x2-1=y原方程可化為y2-5y+4=0,解此方程得y1=1,y2=4.當(dāng)y=1時(shí),x2-1=1,∴x=±
2
;當(dāng)y=4時(shí),x2-1=4,∴x=±
5
,∴原方程的解為x1=
2
,x2=-
2
,x3=
5
,x4=-
5

(1)填空:在原方程得到方程y2-5y+4=0的過程中,利用了
換元
換元
法達(dá)到了降次的目的,體現(xiàn)了
轉(zhuǎn)化
轉(zhuǎn)化
的數(shù)學(xué)思想
(2)解方程:(x2-x)2-8(x2-x)+12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

材料:為解方程x4-x2-6=0,可將方程變形為(x22-x2-6=0,
然后設(shè)x2=y,則(x22=y2,原方程化為y2-y-6=0…①,
解得y1=-2,y2=3.當(dāng)y1=-2時(shí),x2=-2無意義,舍去;
當(dāng)y2=3時(shí),x2=3,解得x=±
3

所以原方程的解為x1=
3
,x2=-
3

問題:(1)在原方程得到方程①的過程中,利用
換元
換元
法達(dá)到了降次的目的,體現(xiàn)了
轉(zhuǎn)化
轉(zhuǎn)化
 的數(shù)學(xué)思想;
(2)利用本題的解題方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

材料:為解方程x4-x2-6=0,可將方程變形為(x22-x2-6=0,然后設(shè)x2=y,則(x22=y2,原方程化為y2-y-6=0…①,
解得y1=-2,y2=3.
當(dāng)y1=-2時(shí),x2=-2無意義,舍去;當(dāng)y2=3時(shí),x2=3,解得x=±
3

所以原方程的解為x1=
3
,x2=-
3

問題:利用本題的解題方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料,解答問題:
材料:在解方程x4-2x2-8=0時(shí),我們可以將x2看成一個(gè)整體,然后設(shè)x2=y,則x4=y2.原方程可化為y2-2y-8=0,解得y=4或y=-2
當(dāng)y=4時(shí),x2=4,所以x=2或x=-2
當(dāng)y=-2時(shí),x2=-2,此方程無解
所以原方程的解為x1=2,x2=-2
問題:請參照上述解法解方程(x2-1)2-5(x2-1)+4=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年山東臨沭第三初級中學(xué)九年級10月月考數(shù)學(xué)試卷(帶解析) 題型:解答題

閱讀下面例題的解答過程,體會并其方法,并借鑒例題的解法解方程。
例:解方程x2-1=0.
解:(1)當(dāng)x-1≥0即x≥1時(shí),= x-1。
原化為方程x2-(x-1)-1=0,即x2-x=0
解得x1 =0.x2=1
∵x≥1,故x =0舍去,
∴x=1是原方程的解。
(2)當(dāng)x-1<0即x<1時(shí),=-(x-1)。
原化為方程x2+(x-1)-1=0,即x2+x-2=0
解得x1 =1.x2=-2
∵x<1,故x =1舍去,
∴x=-2是原方程的解。
綜上所述,原方程的解為x1 =1.x2=-2
解方程x2-4=0.

查看答案和解析>>

同步練習(xí)冊答案