【題目】已知:如圖,在等腰梯形ABCD中,AD//BC,∠BDC=∠BCD,點E是線段BD上一點,且BE=AD.
(1)證明:△ADB≌△EBC;
(2)直接寫出圖中所有的等腰三角形.

【答案】
(1)證明:∵AD//BC,

∴∠ADB=∠EBC,

∵∠BDC=∠BCD,

∴BD=BC,

在△ADB和△EBC中,

∴△ADB≌△EBC(SAS)


(2)解:由(1)可得△BCD是等腰三角形;

∵△ADB≌△EBC,

∴CE=AB,

又∵AB=CD,

∴CE=CD,

∴△CDE是等腰三角形


【解析】(1)根據(jù)平行線的性質(zhì)判定∠ADB=∠EBC,然后由∠BDC=∠BCD,得出BD=BC,結(jié)合BE=AD,利用SAS可證明結(jié)論;(2)根據(jù)(1)的結(jié)論,可得CE=AB,結(jié)合等腰梯形的性質(zhì),可寫出等腰三角形.
【考點精析】關(guān)于本題考查的等腰三角形的判定和等腰梯形的性質(zhì),需要了解如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊).這個判定定理常用于證明同一個三角形中的邊相等;等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,然后解答后面的問題.

(1)定義:把四邊形的某些邊向兩方延長,其他各邊有不在延長所得直線的同一旁,這樣的四邊形叫做凹四邊形.如圖1,四邊形ABCD為凹四邊形.

(2)性質(zhì)探究:請完成凹四邊形一個性質(zhì)的證明.

已知:如圖2,四邊形ABCD是凹四邊形.

求證:∠BCD=B+∠A+∠D.

(3)性質(zhì)應用:

如圖3,在凹四邊形ABCD中,∠BAD的角平分線與∠BCD的角平分線交于點E,若∠ADC=140°,AEC=102°,則∠B=_____°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為等邊三角形,ABC、ACB的平分線相交于點O,OEABBC于點E,OFACBC于點F,圖中等腰三角形共有(  )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 已知點A、點B是直線上的兩點,AB =12厘米,點C在線段AB上,且AC=8厘米點P、點Q是直線上的兩個動點,點P的速度為1厘米秒,點Q的速度為2厘米/秒P、Q分別從點C、點B同時出發(fā),在直線上運動,則經(jīng)過 秒時線段PQ的長為5厘米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,則P點的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“農(nóng)民也可以報銷醫(yī)療費了!”這是某市推行新型農(nóng)村醫(yī)療合作的成果.村民只要每人每年交10元錢,就可以加入合作醫(yī)療,每年先由自己支付醫(yī)療費,年終時可得到按一定比例返回的返回款.這一舉措極大地增強了農(nóng)民抵御大病風險的能力.小華與同學隨機調(diào)查了他們鄉(xiāng)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計圖.
根據(jù)以上信息,解答以下問題:
(1)本次調(diào)查了多少村民,被調(diào)查的村民中,有多少人參加合作醫(yī)療得到了返回款;
(2)該鄉(xiāng)若有10 000村民,請你估計有多少人參加了合作醫(yī)療?要使兩年后參加合作醫(yī)療的人數(shù)增加到9 680人,假設(shè)這兩年的年增長率相同,求這個年增長率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中表示下面各點:

A03);B1-3);C3,-5);D-3,-5);E3,5);F5,7);G5,0

1A點到原點O的距離是

2)將點C軸的負方向平移6個單位,它與點 重合。

3)連接CE,則直線CE軸是什么關(guān)系?

4)點F分別到、軸的距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:五蓮縣新瑪特購物中心第一次用5000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進價和售價如下表(注:獲利=售價﹣進價)

進價(元/件)

20

30

售價(元/件)

29

40

(1)新瑪特購物中心將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

(2)該購物中心第二次以第一次的進價又購進甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADBC,添加下列條件,還不能使ABC≌△CDA成立的是(  )

A. AD=BC B. BAC=ACD C. ABDC D. AB=DC

查看答案和解析>>

同步練習冊答案