問題:已知方程,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍。
解:設(shè)所求方程的根為y,則y=2x,所以
代入已知方程,得
化簡,得:
故所求方程為
這種利用方程根的代換求新方程的方法,我們稱為“換根法”。請(qǐng)閱讀材料提供的“換根法”求新方程(要求:把所求方程化成一般形式)
(1)已知方程,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為:
          
(2)已知關(guān)于x的一元二次方程有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二方程,使它的根分別是已知方程的倒數(shù)。

(1)y2-y-2=0(2)cy2+by+a=0(c≠0)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列范例,按要求解答問題.
例:已知實(shí)數(shù)a、b、c滿足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的兩個(gè)實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時(shí)代入①,得a=
3
2
,b=
3
2
.a(chǎn)=b=
3
2
,c=-1.
以上解法1是構(gòu)造一元二次方程解決問題.若兩實(shí)數(shù)x、y滿足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個(gè)實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問題.若實(shí)數(shù)x、y滿足x+y=m,則可設(shè)x=
m
2
+t,y=
m
2
-t.一些問題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問題順利解決.
下面給出兩個(gè)問題,解答其中任意一題:
(1)用另一種方法解答范例中的問題.
(2)選用范例中的一種方法解答下列問題:
已知實(shí)數(shù)a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面一段文字:“一元二次方程ax2+bx+c=0(a≠0)的根的情況有三種:
①當(dāng)b2-4ac>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;
②當(dāng)b2-4ac=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;
③當(dāng)b2-4ac<0時(shí),方程沒有實(shí)數(shù)根.”請(qǐng)利用以上結(jié)論,解答下面的問題:
已知關(guān)于x的一元二次方程x2-(2k+1)x+4(k-
12
)=0.
(1)判斷這個(gè)一元二次方程的根的情況;
(2)若等腰三角形的一邊長為4,另兩條邊的長恰好是這個(gè)方程的兩個(gè)根,求這個(gè)等腰三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、完成表格,觀察表格中的兩個(gè)根的和與積,它們與原來的方程的系數(shù)有什么關(guān)系?
方程 x1 x2 x1+x2 x1x2
x2-2x=0 0 2
2
0
x2+3x-4=0 -4 1
-3
-4
x2-5x+6=0 2 3
5
6
(1)請(qǐng)用文字語言概括你的發(fā)現(xiàn).
若二次項(xiàng)系數(shù)為1,常用以下關(guān)系:x1,x2是方程x2+px+q=0的兩根時(shí),x1+x2=-p,x1x2=q

(2)一般的,對(duì)于關(guān)于x的方程x2+px+q=0(p、q為常數(shù),p2-4q≥0)的兩根為x1,x2,則x1+x2=
-p
,x1x2=
q

(3)運(yùn)用以上發(fā)現(xiàn)解決下列問題:已知x1,x2是方程x2-x-3=0的兩根,求代數(shù)式(1+x1)(1+x2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請(qǐng)先閱讀下面的解題過程,再完成后面的問題.
已知方程x2+3x+1=0的兩個(gè)實(shí)數(shù)根為α,β,求
α
β
+
β
α
的值.
解:因?yàn)椤?32-4×1=5>0,所以α≠β.…①
由根與系數(shù)的關(guān)系,得α+β=-3,αβ=1.….②
所以
α
β
+
β
α
=
α
β
+
β
α
=
α+β
αβ
=
-3
1
=-3
.…③
上面的解題過程是否正確?若不正確,指出錯(cuò)在哪一步,并寫出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探究發(fā)現(xiàn):
解下列方程,將得到的解填入下面的表格中,觀察表格中兩個(gè)解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方  程 x1 x2 x1+x2 x1•x2
(1)
(2)
(3)
(1)請(qǐng)用文字語言概括你的發(fā)現(xiàn).
(2)一般的,對(duì)于關(guān)于x的方程x2+px+q=0的兩根為x1、x2,則x1+x2=
-p
-p
,x1•x2
q
q

(3)運(yùn)用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個(gè)根為x1,x2,則x1+x2的值為
B
B

A.-2     B.2     C.-7     D.7
②已知x1,x2是方程x2-x-3=0的兩根,試求(1+x1)(1+x2)和x12+x22的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案