【題目】如圖,已知點,開始時,的三個頂點、、分別與點、、重合,點在軸上從點開始向點滑動,到達點結(jié)束運動,同時點沿著軸向右滑動,則在此運動過程中,點的運動路徑長為_______.
【答案】4
【解析】
過點C'作C'D⊥x軸,C'E⊥y軸,由Rt△A'C'E≌Rt△B'C'D,可以判斷C的運動軌跡是第四象限角平分線上的一段線段線段,長度為AC的長;
解:過點C'作C'D⊥x軸,C'E⊥y軸,
∵點M(0,4),N(4,0),
∴OM=ON,
∵∠CA'C'+45°=∠EAB+∠MGB=45°+∠MGB,
∴∠EA'C'=∠B'GB,
∵∠B'GB+∠GB'B=45°,∠GB'B+∠DB'C'=45°,
∴∠EA'C'=∠DB'C',
又∵A'C'=B'C',
∴Rt△A'C'E≌Rt△B'C'D(HL),
∴EC'=DC',
∴C'在第四象限的角平分線上,
∴C的運動軌跡是線段AC,
∴C的運動路徑長為4;
故答案為:4;
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩組同學進行一分鐘引體向上測試,評分標準規(guī)定,做6個以上含6個為合格,做9個以上含9個為優(yōu)秀,兩組同學的測試成績?nèi)缦卤恚?/span>
成績個 | 4 | 5 | 6 | 7 | 8 | 9 |
甲組人 | 1 | 2 | 5 | 2 | 1 | 4 |
乙組人 | 1 | 1 | 4 | 5 | 2 | 2 |
現(xiàn)將兩組同學的測試成績繪制成如下不完整的統(tǒng)計圖表:
統(tǒng)計量 | 平均數(shù)個 | 中位數(shù) | 眾數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | a | 6 | 6 | |||
乙組 | b | 7 |
將條形統(tǒng)計圖補充完整;
統(tǒng)計表中的______,______;
人說甲組的優(yōu)秀率高于乙組優(yōu)秀率,所以甲組成績比乙組成績好,但也有人說乙組成績比甲組成績好,請你給出兩條支持乙組成績好的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC 中,AB=BC=2,∠ABC=120°,將△ABC 繞點 B 順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B 交 AC 于點 E,A1C1 分別交 AC、BC 于 D、F 兩點.
(1)如圖 1,觀察并猜想,在旋轉(zhuǎn)過程中,線段 EA1 與 FC 有怎樣的數(shù)量關(guān)系? 并證明你的結(jié)論;
(2)如圖 2,當α=30°時,試判斷四邊形 BC1DA 的形狀,并說明理由;
(3)在(2)的情況下,求 ED 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的頂點坐標分別為A(3,0),B(0,4),C(-3,0).動點M,N同時從A點出發(fā),M沿A→C,N沿折線A→B→C,均以每秒1個單位長度的速度移動,當一個動點到達終點C時,另一個動點也隨之停止移動,移動時間記為t秒.連接MN.
(1)求直線BC的解析式;
(2)移動過程中,將△AMN沿直線MN翻折,點A恰好落在BC邊上點D處,求此時t值及點D的坐標;
(3)當點M,N移動時,記△ABC在直線MN右側(cè)部分的面積為S,求S關(guān)于時間t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點C在⊙O上,∠AOB=80°
(1) 若點C在優(yōu)弧BD上,求∠ACD的大小
(2) 若點C在劣弧BD上,直接寫出∠ACD的大小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點E.
(1)當F為AB的中點時,求該函數(shù)的解析式;
(2)當k為何值時,△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列網(wǎng)格圖中,每個小正方形的邊長均為1個單位.在Rt△ABC中,∠C=90°,AC=3,BC=2.
(1)試在圖中畫出將△ABC以B為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△A1BC1;
(2)若點B的坐標為(-1,-4),點C的坐標為(-3,-4),試在圖中畫出直角坐標系,并寫出點A的坐標;
(3)根據(jù)(2)的坐標系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小型加工廠準備每天生產(chǎn)甲、乙兩種類型的產(chǎn)品共1000件,原料成本、銷售單價,及工人計件工資如表:
甲(元/件) | 乙(元/件) | |
原料成本 | 10 | 8 |
銷售單價 | 20 | 16 |
計件工資 | 2 | 1.5 |
設(shè)該加工廠每天生產(chǎn)甲型產(chǎn)品x件,每天獲得總利潤為y元.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)若該工廠每天投人總成本不超過10750元,怎樣安排甲、乙兩種類型的生產(chǎn)量,可使該廠每天所獲得的利潤最大?并求出最大利潤.(總成本=原料成本+計件工資,利潤=銷售收入一投人總成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察發(fā)現(xiàn):如圖1,在中,,點在邊上,過作交于,,,.填空:
①與是否相似(直接回答)________;
②________;________;
(2)拓展探究:將繞頂點旋轉(zhuǎn)到圖2所示的位置,猜想與是否相似?若不相似,說明理由;若相似,請證明;
(3)遷移應(yīng)用:將繞頂點旋轉(zhuǎn)到點、、在同一條直線上時,直接寫出線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com