精英家教網 > 初中數學 > 題目詳情

【題目】如圖菱形ABOCAB,AC分別與⊙O相切于點D、E,若點DAB的中點,則∠DOE=__________.

【答案】60°

【解析】AB,AC分別與⊙O相切于點D、E,可得∠BDO=ADO=AEO=90°,根據已知條件可得到BD=OB,在RtOBD中,求得∠B=60°,繼而可得∠A=120°,再利用四邊形的內角和即可求得∠DOE的度數.

【詳解AB,AC分別與⊙O相切于點D、E,

∴∠BDO=ADO=AEO=90°,

∵四邊形ABOC是菱形,∴AB=BO,A+B=180°,

BD=AB,

BD=OB,

RtOBD中,∠ODB=90°,BD=OB,cosB=,∴∠B=60°,

∴∠A=120°,

∴∠DOE=360°-120°-90°-90°=60°,

故答案為:60°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB的垂直平分線DEBC的延長線于F,若∠F30°,DE1,則EF的長是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一張長12cm、寬5cm的矩形紙片內要折出一個菱形小華同學按照取兩組對邊中點的方法折出菱形EFGH見方案一),小麗同學沿矩形的對角線AC折出CAE=CAD,ACF=ACB的方法得到菱形AECF見方案二).

1你能說出小華、小麗所折出的菱形的理由嗎?

2請你通過計算,比較小華和小麗同學的折法中,哪種菱形面積較大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥ABE.

(1)若∠BAC=50°,求∠EDA的度數;

(2)求證:直線AD是線段CE的垂直平分線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于EF點,若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正六邊形ABCDEF的邊長是6+4,點O1,O2分別是ABF,CDE的內心,則O1O2=_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)一般地,數軸上表示數m和數n的兩點之間的距離等于.如果表示數a的兩點之間的距離是5,那么__________;

2)若數軸上表示數a的點位于6之間,求的值;

3)當a取何值時,的值最小,最小值是多少?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,A(m,n+1),B(m+2,n).

1)當m=1,n=2.如圖1,連接AB、AO、BO.直接寫出△ABO的面積為 .

2)如圖2,若點A在第二象限、點B在第一象限,連接AB、AOBO,ABy軸于H,△ABO的面積為2.求點H的坐標.

3)若點AB在第一象限,在y 軸正半軸上存在點C,使得∠CAB=900,CA=AB,m的值,及OC的長(用含n的式子表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是矩形的對角線的交點,、、分別是、、上的點,且

求證:四邊形是矩形;

、分別是、、的中點,且,求矩形的面積.

查看答案和解析>>

同步練習冊答案