【題目】如圖,在平面直角坐標系中,拋物線軸交于兩點,與軸交于點C,點D時拋物線的頂點

1)求拋物線的解析式和直線的解析式;

2)試探究:在拋物線上是否存在點P,使得以點為頂點,為直角邊的三角形是直角三角形,若存在,請求出,請求出符合條件的點P的坐標;若不存在,請說明理由.

【答案】(1);直線AC的方程為;(2)存在,點P的坐標為

【解析】

1)根據(jù)拋物線與的交點坐標,設拋物線的解析式為,化簡得,與原題的解析式對比,易得,解出a的值,代入所設解析式即可得拋物線解析式;

根據(jù)拋物線與軸交于點C,可求得,設直線AC的解析式為,把A、C的坐標代入可求出,從而即可求得直線AC的解析式;

(2)分兩種情況求解:①過點CAC的垂線交拋物線于另一點P,則直線PC的解析式為,再聯(lián)立,可求得交點P的坐標為;

②過點AAC的垂線交拋物線于點P,則可得所以直線PC的解析式為,聯(lián)立,可求得點P的坐標為

解:(1)設拋物線的解析式為,

,

,

,

,

所以拋物線的解析式為;

時, ,

設直線AC的解析式為,

代入,

所以,

所以直線AC的方程為

(2)存在;理由如下:

①過點CAC的垂線交拋物線于另一點P

∵直線AC的方程為,

∴直線PC的解析式為

解方程組:,

解得:,

此時點P的坐標為;

②過點AAC的垂線交拋物線于點P,

直線PC的解析式為,

代入得

所以直線PC的解析式為,

解方程組:

解得:,

所以點P的坐標為

綜上所述,符合條件的點P的坐標為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在線段BD上,在BD的同側(cè)作等腰RtABC和等腰RtADE,其中∠ABC=AED=90°,CDBEAE分別交于點P、M.對于下列結(jié)論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是( 。

A. ①②B. ①②③C. ①②③④D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校教學樓與實驗樓的水平間距米,在實驗樓頂部點測得教學樓頂部點的仰角是,底部點的俯角是,則教學樓的高度是____米(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ab,∠140°,∠280°,則∠3的度數(shù)為( 。

[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]

A.120°B.130°C.140°D.110°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為6的菱形ABCD中,對角線AC,BD交點與點O,點P是△ADO的重心.

1)當菱形ABCD是正方形時,則PA=________,PD=__________,PO=_________.

2)線段PAPD,PO中是否存在長度保持不變的線段,若存在,請求出該線段的長度,若不存在,請說明理由.

3)求線段PD,DO滿足的等量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等腰直角三角形,,.折疊該紙片,使點落在線段上,折痕與邊交于點,與邊交于點.

(1)若折疊后使點與點重合,此時__________;

(2)若折疊后使點與邊的中點重合,求的長度;

(3)若折疊后點落在邊上的點為,且使,求此時的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)

根據(jù)所給信息,解答以下問題:

(1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是   度;

(2)補全條形統(tǒng)計圖;

(3)所抽取學生的足球運球測試成績的中位數(shù)會落在   等級;

(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公共汽車線路每天運營毛利潤(萬元)與乘客量(萬人)成一次函數(shù)關系,其圖象如圖所示.目前通過監(jiān)測發(fā)現(xiàn)每天平均乘客量為0.6萬人次,由于運營成本較高,這條線路處于虧損狀態(tài).(毛利潤=票價總收入一運營成本)

1)求該線路公共汽車的單程票價和每天運營成本分別為多少元.

2)公交公司為了扭虧,若要使每天運營毛利潤在0.2~0.4萬元之間(包括0.20.4),求平均每天的乘客量的范圍.

3)據(jù)實際情況,發(fā)現(xiàn)該線路乘客量穩(wěn)定,公交公司決定適當提高票價,當單程票價每提高1元時,每天平均乘客量相應減少0.05萬人次,設這條線路的單程票價提高元(.為何值時,該線路每天運營總利潤最大,并求出最大的總利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A、B、C、D、E是⊙O上五點,⊙O的直徑BE=2,BCD=120°,A的中點,延長BA到點P,使BA=AP,連接PE.

(1)求線段BD的長;

(2)求證:直線PE是⊙O的切線.

查看答案和解析>>

同步練習冊答案