【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為(
A.2
B.8
C.2
D.2

【答案】D
【解析】解:∵⊙O的半徑OD⊥弦AB于點(diǎn)C,AB=8, ∴AC= AB=4,
設(shè)⊙O的半徑為r,則OC=r﹣2,
在Rt△AOC中,
∵AC=4,OC=r﹣2,
∴OA2=AC2+OC2 , 即r2=42+(r﹣2)2 , 解得r=5,
∴AE=2r=10,
連接BE,
∵AE是⊙O的直徑,
∴∠ABE=90°,
在Rt△ABE中,
∵AE=10,AB=8,
∴BE= = =6,
在Rt△BCE中,
∵BE=6,BC=4,
∴CE= = =2
故選:D.

先根據(jù)垂徑定理求出AC的長(zhǎng),設(shè)⊙O的半徑為r,則OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的長(zhǎng),連接BE,由圓周角定理可知∠ABE=90°,在Rt△BCE中,根據(jù)勾股定理即可求出CE的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=2x+m(m>0)x軸交于點(diǎn)A(-20),直線y=-x+n(n>0)x軸、y軸分別交于BC兩點(diǎn),并與直線y=2x+m(m>0)相交于點(diǎn)D,若AB=4

1)求點(diǎn)D的坐標(biāo);

2)求出四邊形AOCD的面積;

3)若Ex軸上一點(diǎn),且ACE為等腰三角形,直接寫出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).

(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移 個(gè)單位長(zhǎng)度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=ax+b(a≠0)、二次函數(shù)y=ax2+bx和反比例函數(shù)y= (k≠0)在同一直角坐標(biāo)系中的圖象如圖所示,A點(diǎn)的坐標(biāo)為(﹣2,0),則下列結(jié)論中,正確的是(
A.b=2a+k
B.a=b+k
C.a>b>0
D.a>k>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.

求證:(1)EC=BF;(2)EC⊥BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點(diǎn)A(2,1),B(﹣1,﹣3).

(1)求此一次函數(shù)的解析式;

(2)求此一次函數(shù)的圖象與x軸、y軸的交點(diǎn)坐標(biāo);

(3)求此一次函數(shù)的圖象與兩坐標(biāo)軸所圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A第,到達(dá)A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:

(1)A、B兩地之間的距離: km;

(2)甲的速度為 km/h;乙的速度為30km/h;

(3)點(diǎn)M的坐標(biāo)為 ;

(4)求:甲離B地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)關(guān)系式(不必寫出自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系xOy(如圖),直線 y=x+b經(jīng)過第一、二、三象限,與y軸交于點(diǎn)B,點(diǎn)A(2,t)在直線y=x+b上,連結(jié)AO,△AOB的面積等于1.

(1)求b的值;

(2)如果反比例函數(shù)y= (k是常量,k≠0)的圖象經(jīng)過點(diǎn)A,求這個(gè)反比例函數(shù)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案