【題目】已知:如圖,M、N分別為兩平行線AB、CD上兩點(diǎn),點(diǎn)E位于兩平行線之間,試探究:∠MEN與∠AME和∠CNE之間有何關(guān)系?并說明理由.

【答案】(1)當(dāng)點(diǎn)EMN上時(shí),∠MEN=∠CNE+∠AME180°. 證明見解析;(2)當(dāng)點(diǎn)EMN左側(cè)時(shí),∠MEN=∠AME+∠CNE.證明見解析;(3)當(dāng)點(diǎn)EMN右側(cè)時(shí),∠MEN360°-(∠AME+∠CNE).證明見解析;

【解析】

連結(jié)MN,根據(jù)平行線的性質(zhì),分三種情況討論:

(1)當(dāng)點(diǎn)EMN上時(shí),∠MEN=∠CNE+∠AME180°.

(2)當(dāng)點(diǎn)EMN左側(cè)時(shí),∠MEN=∠AME+∠CNE

(3)當(dāng)點(diǎn)EMN右側(cè)時(shí),∠MEN360°-(∠AME+∠CNE).

連結(jié)MN,分三種情況:

點(diǎn)EMN上;⑵點(diǎn)EMN左側(cè);⑶點(diǎn)EMN右側(cè).如圖所示:

(1)當(dāng)點(diǎn)EMN上時(shí),∠MEN=∠CNE+∠AME180°.

證明:∵ABCD,

∴∠CNE+∠AME180°

又∵∠MEN是平角,

∴∠∠MEN180°

∴∠MEN=∠AME+CNE180°

(2)當(dāng)點(diǎn)EMN左側(cè)時(shí),∠MEN=∠AME+∠CNE

證明:過點(diǎn)E

∴∠MEN=∠AME+∠CNE

(3)當(dāng)點(diǎn)EMN右側(cè)時(shí),∠MEN360°-(∠AME+∠CNE).

證明:過點(diǎn)EEGAB

,

∴∠MEN360°-(∠AME+∠CNE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人沿相同的路線由勻速行進(jìn),兩地間的路程為他們行進(jìn)的路程與甲出發(fā)后的時(shí)間之間的函數(shù)圖像如圖所示.根據(jù)圖像信息,下列說法正確的是(

A.甲的速度是B.乙的速度是

C.乙比甲晚出發(fā)D.甲比乙晚到

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)銷售A,B兩種品牌的多媒體教學(xué)設(shè)備,這兩種多媒體教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如表所示.

1)若該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種多媒體教學(xué)設(shè)備若干套,共需124萬元,全部銷售后可獲毛利潤(rùn)36萬元.則該商場(chǎng)計(jì)劃購(gòu)進(jìn)AB兩種品牌的多媒體教學(xué)設(shè)備各多少套?

2)通過市場(chǎng)調(diào)研,該商場(chǎng)決定在(1)中所購(gòu)總數(shù)量不變的基礎(chǔ)上,減少A種設(shè)備的購(gòu)進(jìn)數(shù)量,增加B種設(shè)備的購(gòu)進(jìn)數(shù)量.若用于購(gòu)進(jìn)這兩種多媒體教學(xué)設(shè)備的總資金不超過120萬元,且全部銷售后可獲毛利潤(rùn)不少于33.6萬元.問有幾種購(gòu)買方案?并寫出購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的坐標(biāo)為,作軸,軸,垂足分別為,,點(diǎn)為線段的中點(diǎn),點(diǎn)從點(diǎn)出發(fā),在線段、上沿運(yùn)動(dòng),當(dāng)時(shí),點(diǎn)的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y軸交于點(diǎn)B0,3),與x軸交于點(diǎn) A

1)求拋物線的解析式;

2Mm,0)為軸上一動(dòng)點(diǎn),過點(diǎn)M且垂直于軸的直線與直線AB及拋物線分別交于點(diǎn)P,N

①點(diǎn)M在線段OA上運(yùn)動(dòng),若以B,P,N為頂點(diǎn)的三角形與APM相似,求點(diǎn)M的坐標(biāo);

②點(diǎn)M軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn)M、P、N中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱M,P,N三點(diǎn)為“共諧點(diǎn)”.請(qǐng)直接寫出使得M,P,N三點(diǎn)成為“共諧點(diǎn)”的 m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸交于, ,與軸交于. 

(1)若,求拋物線的解析式,并寫出拋物線的對(duì)稱軸;

(2)如圖1,在(1)的條件下,設(shè)拋物線的對(duì)稱軸交軸于,在對(duì)稱軸左側(cè)的拋物線上有一點(diǎn),使,求點(diǎn)的坐標(biāo);

(3)如圖2,設(shè), ,在線段上是否存在點(diǎn),使?若存在,求的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為獎(jiǎng)勵(lì)在趣味運(yùn)動(dòng)會(huì)上取得好成績(jī)的員工,計(jì)劃購(gòu)買甲、乙兩種獎(jiǎng)品共20件,其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元.

(1)如果購(gòu)買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購(gòu)買了多少件;

(2)如果購(gòu)買乙種獎(jiǎng)品的件數(shù)不超過甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過680元,求該公司有哪幾種不同的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從家出發(fā),沿一條直道跑步,經(jīng)過一段時(shí)間原路返回,剛好在第回到家中.設(shè)小明出發(fā)第時(shí)的速度為,離家的距離為.之間的函數(shù)關(guān)系如圖所示(圖中的空心圈表示不包含這一點(diǎn)).

(1)小明出發(fā)第時(shí)離家的距離為 ;

(2)當(dāng)時(shí),求之間的函數(shù)表達(dá)式;

(3)畫出之間的函數(shù)圖像.

查看答案和解析>>

同步練習(xí)冊(cè)答案