【題目】如圖,拋物線yax2+bx+cx軸相交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),頂點(diǎn)在折線MPN上移動(dòng),它們的坐標(biāo)分別為M(﹣14)、P34)、N31).若在拋物線移動(dòng)過程中,點(diǎn)A橫坐標(biāo)的最小值為﹣3,則ab+c的最小值是_____

【答案】﹣15.

【解析】

由題意得:當(dāng)頂點(diǎn)在M處,點(diǎn)A橫坐標(biāo)為-3,可以求出拋物線的a值;當(dāng)頂點(diǎn)在N處時(shí),y=a-b+c取得最小值,即可求解.

解:由題意得:當(dāng)頂點(diǎn)在M處,點(diǎn)A橫坐標(biāo)為-3

則拋物線的表達(dá)式為:y=ax+12+4,

將點(diǎn)A坐標(biāo)(-30)代入上式得:0=a-3+12+4,

解得:a=-1,

當(dāng)x=-1時(shí),y=a-b+c,

頂點(diǎn)在N處時(shí),y=a-b+c取得最小值,

頂點(diǎn)在N處,拋物線的表達(dá)式為:y=-x-32+1,

當(dāng)x=-1時(shí),y=a-b+c=--1-32+1=-15,

故答案為-15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角ABC中,∠C=90°DBC的中點(diǎn),將ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則cosBED的值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜每千克售價(jià)(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1).

1)求出之間滿足的函數(shù)表達(dá)式,并直接寫出的取值范圍;

2)求出之間滿足的函數(shù)表達(dá)式;

3)設(shè)這種蔬菜每千克收益為元,試問在哪個(gè)月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:,善于思考的小明進(jìn)行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問題:

當(dāng)均為正整數(shù)時(shí),若,用含mn的式子分別表示,得      ;

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,以BC為直徑的⊙OAB于點(diǎn)D,切線DEAC于點(diǎn)E

1)求證:∠A=∠ADE

2)若AD8,DE5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快城鄉(xiāng)對(duì)接,建設(shè)美麗鄉(xiāng)村,某地區(qū)對(duì)A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山.汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC100千米,∠A45°,∠B30°

1)開通隧道前,汽車從A地到B地要走多少千米?

2)開通隧道后,汽車從A地到B地可以少走多少千米?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點(diǎn).

(1)求反比例函數(shù)的解析式;

(2)求一次函數(shù)的解析式;

(3)點(diǎn)P是x軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:AD是正△ABC的高,OAD上一點(diǎn),⊙O經(jīng)過點(diǎn)D,分別交ABACE、F

1)求∠EDF的度數(shù);

2)若AD6,求△AEF的周長(zhǎng);

3)設(shè)EF、AD相較于N,若AE3,EF7,求DN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 中,∠C=90°,CA=CB,D AC 上的一點(diǎn),AD=3CD,AEAB BD 延長(zhǎng)線于 E,記△EAD,△DBC 的面積分別為 S1,S2,則 S1S2=______

查看答案和解析>>

同步練習(xí)冊(cè)答案