【題目】如圖,已知點(diǎn)A,B,C在半徑為4的⊙O上,過(guò)點(diǎn)C作⊙O的切線交OA的延長(zhǎng)線于點(diǎn)D.

Ⅰ)若∠ABC=29°,求∠D的大。

Ⅱ)若∠D=30°,BAO=15°,作CEAB于點(diǎn)E,求:

BE的長(zhǎng);

②四邊形ABCD的面積.

【答案】(1)∠D=32°;(2)①BE=;

【解析】

(Ⅰ)連接OC, CD為切線,根據(jù)切線的性質(zhì)可得∠OCD=90°,根據(jù)圓周角定理可得∠AOC=2ABC=29°×2=58°,根據(jù)直角三角形的性質(zhì)可得∠D的大小.

(Ⅱ①根據(jù)∠D=30°,得到∠DOC=60°,根據(jù)∠BAO=15°,可以得出∠AOB=150°,進(jìn)而證明△OBC為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得出

根據(jù)圓周角定理得出根據(jù)含角的直角三角形的性質(zhì)即可求出BE的長(zhǎng);

②根據(jù)四邊形ABCD的面積=SOBC+SOCDSOAB進(jìn)行計(jì)算即可.

(Ⅰ)連接OC,

CD為切線,

OCCD

∴∠OCD=90°,

∵∠AOC=2ABC=29°×2=58°,

∴∠D=90°58°=32°;

(Ⅱ)①連接OB,

RtOCD中,∵∠D=30°,

∴∠DOC=60°,

∵∠BAO=15°,

∴∠OBA=15°

∴∠AOB=150°,

∴∠OBC=150°60°=90°

∴△OBC為等腰直角三角形,

RtCBE中,

②作BHOAH,如圖,

∵∠BOH=180°﹣∠AOB=30°,

∴四邊形ABCD的面積=SOBC+SOCDSOAB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AOB=90°,OA=90cm,OB=30cm,一機(jī)器人在點(diǎn)B處看見(jiàn)一個(gè)小球從點(diǎn)A出發(fā)沿著AO方向勻速滾向點(diǎn)O,機(jī)器人立即從點(diǎn)B出發(fā),沿直線勻速前進(jìn)攔截小球恰好在點(diǎn)C處截住了小球如果小球滾動(dòng)的速度與機(jī)器人行走的速度相等,那么機(jī)器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù),下列結(jié)論錯(cuò)誤的是(

A.若兩點(diǎn)A(),B()在該函數(shù)圖象上,且,則

B.函數(shù)的圖象不經(jīng)過(guò)第三象限

C.函數(shù)的圖象向下平移4個(gè)單位長(zhǎng)度得到的圖象

D.函數(shù)的圖象與軸的交點(diǎn)坐標(biāo)是(0,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AC=ADADBC,

(1)求證:BD平分∠ABC

(2)若∠C=78°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=90°,矩形ABCD的頂點(diǎn)A、B分別在邊OM,ON上,當(dāng)B在邊ON上運(yùn)動(dòng)時(shí),A隨之在OM上運(yùn)動(dòng),矩形ABCD的形狀保持不變,其中AB=2,BC=1,運(yùn)動(dòng)過(guò)程中,點(diǎn)D到點(diǎn)O的最大距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系xoy中,直線y=x+x軸于點(diǎn)B,交y軸于點(diǎn)A,過(guò)點(diǎn)C1,0)作x軸的垂線l,將直線l繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為αα180°.

1)當(dāng)直線l與直線y=x+平行時(shí),求出直線l的解析式;

2)若直線l經(jīng)過(guò)點(diǎn)A,①求線段AC的長(zhǎng);②直接寫(xiě)出旋轉(zhuǎn)角α的度數(shù);

3)若直線l在旋轉(zhuǎn)過(guò)程中與y軸交于D點(diǎn),當(dāng)ABDACD、BCD均為等腰三角形時(shí),直接寫(xiě)出符合條件的旋轉(zhuǎn)角α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成一個(gè)大正方形(如圖所示),如果大正方形的面積是64,小正方形的面積為4,直角三角形的兩直角邊長(zhǎng)分別為a,b,且a> b . 那么下列結(jié)論:(1a2+b2=64,(2ab=2,(3ab=30,(4a+b=2.正確結(jié)論的個(gè)數(shù)有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.在△ABC中,AD是邊BC上的中線,過(guò)點(diǎn)A作AE∥BC,過(guò)點(diǎn)D作與DE∥AB,DE與AC、AE分別交于點(diǎn)O、E,連接EC.

(1)求證:AD=EC;

(2)當(dāng)△ABC滿足  時(shí),四邊形ADCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)A(1,0),B(3,1),C(3,3),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)D.

(1)求點(diǎn)D的坐標(biāo)及反比例函數(shù)的解析式;

(2)經(jīng)過(guò)點(diǎn)C的一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于P點(diǎn),當(dāng)k>0時(shí),確定點(diǎn)P橫坐標(biāo)的取值范圍(不必寫(xiě)出過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案