已知二次函數(shù)y=ax2+bx+c中,其函數(shù)y與自變量x之間的部分對(duì)應(yīng)值如下表所示:
x 0 1 2 3 4 5
y 4 1 0 1 4 9
(1)當(dāng)x=-1時(shí),y的值為_(kāi)_____;
(2)點(diǎn)A(x1,y1)、B(x2,y2)在該函數(shù)的圖象上,則當(dāng)1<x1<2,3<x2<4時(shí),y1與y2的大小關(guān)系是______;
(3)若將此圖象沿x軸向右平移3個(gè)單位,請(qǐng)寫出平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式:______;
(4)設(shè)點(diǎn)P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函數(shù)y=ax2+bx+c的圖象上,問(wèn):當(dāng)m<-3時(shí),y1、y2、y3的值一定能作為同一個(gè)三角形三邊的長(zhǎng)嗎?為什么?
(1)根據(jù)圖表知,當(dāng)x=1和x=3時(shí),所對(duì)應(yīng)的y值都是2,
∴拋物線的對(duì)稱軸是直線x=2,
∴x=-1與x=5時(shí)的函數(shù)值相等,
∵x=5時(shí),y=9,
∴x=-1時(shí),y=9;

(2)∵當(dāng)1<x1<2時(shí),函數(shù)值y1小于1;當(dāng)3<x2<4時(shí),函數(shù)值y2大于1,
∴y1<y2;

(3)∵二次函數(shù)y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,0),
∴可設(shè)此二次函數(shù)的頂點(diǎn)式為y=a(x-2)2
將點(diǎn)(0,4)代入,得a(0-2)2=4,
解得a=1,
∴y=(x-2)2,
∴將y=(x-2)2的圖象沿x軸向右平移3個(gè)單位,所對(duì)應(yīng)的函數(shù)關(guān)系式為y=(x-2-3)2,
即y=(x-5)2或y=x2-10x+25;

(4)當(dāng)m<-3時(shí),y1、y2、y3的值一定能作為同一個(gè)三角形三邊的長(zhǎng).理由如下:
∵y=(x-2)2,
∴y1=(m-2)2,y2=(m-1)2,y3=m2,
∵m<-3,
∴y1>y2>y3>0,m+3<0,m-1<-4<0,
∵y2+y3-y1=(m-1)2+m2-(m-2)2=m2+2m-3=(m+3)(m-1),
∴y2+y3-y1>0,
∴y2+y3>y1,
∴當(dāng)m<-3時(shí),y1、y2、y3的值一定能作為同一個(gè)三角形三邊的長(zhǎng).
故答案為9;y1<y2;y=(x-5)2或y=x2-10x+25.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點(diǎn)A.B,與y軸交于點(diǎn) C.

(1)寫出A. B.C三點(diǎn)的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個(gè)根

C.a+b+c=0          D.當(dāng)x<1時(shí),y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對(duì)稱軸為直線x=1,它的部分自變量與函數(shù)值y的對(duì)應(yīng)值如下表,寫出方程ax2+bx+c=0的一個(gè)正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說(shuō)法錯(cuò)誤的是:

(A)圖像關(guān)于直線x=1對(duì)稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個(gè)根

(D)當(dāng)x<1時(shí),y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊(cè)答案