【題目】如圖,在正方形網(wǎng)絡(luò)中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為(﹣2,4)、(﹣2,0)、(﹣4,1),將△ABC繞原點(diǎn)O旋轉(zhuǎn)180度得到△A1B1C1 . 結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:
(1)畫(huà)出△A1B1C1;
(2)畫(huà)出一個(gè)△A2B2C2 , 使它分別與△ABC,△A1B1C1軸對(duì)軸(其中點(diǎn)A,B,C與點(diǎn)A2 , B2 , C2對(duì)應(yīng));
(3)在(2)的條件下,若過(guò)點(diǎn)B的直線平分四邊形ACC2A2的面積,請(qǐng)直接寫(xiě)出該直線的函數(shù)解析式.
【答案】
(1)解:如圖1所示:
(2)解:如圖1所示:直線解解析式為y=0;
如圖2所示:
(3)解:經(jīng)過(guò)點(diǎn)B和(0,2.5)的直線平分四邊形ACC2A2的面積,
設(shè)直線的解析式為y=kx+b,
將(﹣2,0)和(0,2.5)代入得: ,
解得:
直線的解析式為y= .
綜上所述:直線的解析式為y=0或y= .
【解析】(1)首先由旋轉(zhuǎn)的性質(zhì)求得對(duì)應(yīng)點(diǎn)的坐標(biāo),然后畫(huà)出圖形即可;(2)由軸對(duì)稱(chēng)圖形的性質(zhì)找出對(duì)應(yīng)點(diǎn)的坐標(biāo),然后畫(huà)出圖形即可;(3)分別畫(huà)出三角形關(guān)于x軸對(duì)稱(chēng)和關(guān)于y軸對(duì)稱(chēng)的圖形,然后再找出過(guò)點(diǎn)B平分四邊形面積的直線,最后求得解析式即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】你認(rèn)為月球上有水嗎?如圖是對(duì)某中學(xué)八年級(jí)的140名男生的調(diào)查結(jié)果.
(1)認(rèn)為“有水”的頻數(shù)為________,認(rèn)為“沒(méi)有水”的頻數(shù)是_______,認(rèn)為“不知道”的頻數(shù)是_______;
(2)認(rèn)為“有水”的頻率為_______,認(rèn)為“沒(méi)有水”的頻率是______,認(rèn)為“不知道”的頻率是_______,頻率之和為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,5),直線x=-5與x軸交于點(diǎn)D,直線y=-x-與x軸及直線x=-5分別交于點(diǎn)C,E.點(diǎn)B,E關(guān)于x軸對(duì)稱(chēng),連接AB.
(1)求點(diǎn)C,E的坐標(biāo)及直線AB的解析式;
(2)若S=S△CDE+S四邊形ABDO,求S的值;
(3)在求(2)中S時(shí),嘉琪有個(gè)想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉(zhuǎn)化為直接求△AOC的面積,如此不更快捷嗎?”但大家經(jīng)反復(fù)驗(yàn)算,發(fā)現(xiàn)S△AOC≠S,請(qǐng)通過(guò)計(jì)算解釋他的想法錯(cuò)在哪里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某同學(xué)在課下設(shè)計(jì)的一款軟件,藍(lán)精靈從點(diǎn)O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到達(dá)A2n后,要向________方向跳________個(gè)單位長(zhǎng)度落到A2n+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A(﹣1,0)、B(3,0)兩點(diǎn),交y軸于點(diǎn)C,連接BC,動(dòng)點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度從A向B運(yùn)動(dòng),動(dòng)點(diǎn)Q以每秒 個(gè)單位長(zhǎng)度的速度從B向C運(yùn)動(dòng),P、Q同時(shí)出發(fā),連接PQ,當(dāng)點(diǎn)Q到達(dá)C點(diǎn)時(shí),P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求二次函數(shù)的解析式;
(2)如圖1,當(dāng)△BPQ為直角三角形時(shí),求t的值;
(3)如圖2,過(guò)點(diǎn)Q作QN⊥x軸于N,交拋物線于點(diǎn)M,連結(jié)MC,MB,當(dāng)t為何值時(shí),△MCB的面積最大,并求出此時(shí)點(diǎn)M的坐標(biāo)和△MCB面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC邊上一動(dòng)點(diǎn),G是BC邊上的一動(dòng)點(diǎn),GE∥AD分別交AC、BA或其延長(zhǎng)線于F、E兩點(diǎn)
(1)如圖1,當(dāng)BC=5BD時(shí),求證:EG⊥BC;
(2)如圖2,當(dāng)BD=CD時(shí),F(xiàn)G+EG是否發(fā)生變化?證明你的結(jié)論;
(3)當(dāng)BD=CD,F(xiàn)G=2EF時(shí),DG的值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D是邊BC上任意一點(diǎn),連接AD,過(guò)點(diǎn)C作CE⊥AD于點(diǎn)E.
(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長(zhǎng);
(2)如圖2,過(guò)點(diǎn)C作CF⊥CE,且CF=CE,連接BF,
求證:AE=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=40°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,則∠CDF= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、C、B、D在同一條直線上,AC=BD,AM=CN,BM=DN,
求證:(1)△ABM ≌△CDN; (2)AM∥CN.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com