【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(﹣3,4),點(diǎn)Cx軸的正半軸上,直線ACy軸于點(diǎn)MAB邊交于y軸于點(diǎn)H

1)連接BM,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以1個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)PMB的面積為SS0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求St之間的函數(shù)關(guān)系式(要求寫(xiě)出自變量t的取值范圍);

2)在(1)的情況下,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),是否存在以BM為腰的等腰三角形BMP?如存在,求出t的值;如不存在,請(qǐng)說(shuō)明理由.

【答案】1)詳見(jiàn)解析;(2)當(dāng)t=1時(shí),PMB為以BM為腰的等腰三角形.

【解析】

1)設(shè)點(diǎn)MBC的距離為h,由ABC的面積易得h,利用分類討論的思想,三角形的面積公式①當(dāng)P在直線AB上運(yùn)動(dòng);②當(dāng)P運(yùn)動(dòng)到直線BC上時(shí)分別得PBM的面積;

2)分類討論:①當(dāng)MB=MP時(shí),PH=BH,解得t;②當(dāng)BM=BP時(shí),利用勾股定理可得BM的長(zhǎng),易得t

解:

1)設(shè)點(diǎn)MBC的距離為h,

SABC=SABM+SBCM,

,

h=,

①當(dāng)P在直線AB上運(yùn)動(dòng)時(shí)PBM的面積為SP的運(yùn)動(dòng)時(shí)間為t秒關(guān)系為:

S=5t×,即S= 0≤t5);

②當(dāng)P運(yùn)動(dòng)到直線BC上時(shí)PMB的面積為SP的運(yùn)動(dòng)時(shí)間為t秒關(guān)系為:

S= [5﹣(10t,即S=t-5t≤10);

2)存在①當(dāng)MB=MP時(shí),

∵點(diǎn)A的坐標(biāo)為(﹣34),AB=5MB=MP,MHAB

PH=BH,即3t=2

t=1;

②當(dāng)BM=BP時(shí),即5t= ,

綜上所述,當(dāng)t=1時(shí),△PMB為以BM為腰的等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店在甲批發(fā)市場(chǎng)以每包m元的價(jià)格進(jìn)了40包茶葉,又在乙批發(fā)市場(chǎng)以每包n的價(jià)格進(jìn)了同樣的60包茶葉,如果商家以每包元的價(jià)格賣(mài)出這些茶葉,賣(mài)完后,這家商店( )

A. 盈利了B. 虧損了C. 不盈不虧D. 盈虧不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,,點(diǎn)以每秒1個(gè)單位的速度從運(yùn)動(dòng),同時(shí)點(diǎn)以每秒2個(gè)單位的速度從方向運(yùn)動(dòng),到達(dá)點(diǎn)后,點(diǎn)也停止運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為.

(1)點(diǎn)停止運(yùn)動(dòng)時(shí),的長(zhǎng);

(2) 兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,點(diǎn)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),是否存在時(shí)間,使四邊形為菱形?若存在,求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.

(3) 兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,求使相似的時(shí)間的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上,點(diǎn)A向右移動(dòng)1個(gè)單位得到點(diǎn)B,點(diǎn)B向右移動(dòng)(n+1)(n為正整數(shù))個(gè)單位得到點(diǎn)C,點(diǎn)A,B,C分別表示有理數(shù)a,b,c,

(1)當(dāng)n=1時(shí),

點(diǎn)A,B,C三點(diǎn)在數(shù)軸上的位置如圖所示,a,b,c三個(gè)數(shù)的乘積為正數(shù),數(shù)軸上原點(diǎn)的位置可   

A.在點(diǎn)A左側(cè)或在A,B兩點(diǎn)之間 B.在點(diǎn)C右側(cè)或在A,B兩點(diǎn)之間

C.在點(diǎn)A左側(cè)或在B,C兩點(diǎn)之間 D.在點(diǎn)C右側(cè)或在B,C兩點(diǎn)之間

若這三個(gè)數(shù)的和與其中的一個(gè)數(shù)相等,求a的值;

(2)將點(diǎn)C向右移動(dòng)(n+2)個(gè)單位得到點(diǎn)D,點(diǎn)D表示有理數(shù)d,a、b、c、d四個(gè)數(shù)的積為正數(shù),這四個(gè)數(shù)的和與其中的兩個(gè)數(shù)的和相等,且a為整數(shù),請(qǐng)?jiān)跀?shù)軸上標(biāo)出點(diǎn)D并用含n的代數(shù)式表示a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形A1B1C1D1的邊長(zhǎng)為2,且∠A1B1C1=60°,對(duì)角線A1C1,B1D1相較于點(diǎn)O,以點(diǎn)O為坐標(biāo)原點(diǎn),分別以O(shè)A1,OB1所在直線為x軸、y軸,建立如圖所示的直角坐標(biāo)系,以B1D1為對(duì)角線作菱形B1C2D1A2 ,使得∠B1A2D1=60°;再以A2C2為對(duì)角線作菱形A2B2C2D2,使得∠A2B2C2=60°;再以B2D2為對(duì)角線作菱形B2C3D2A3,使得∠B2A3D2=60°…,按此規(guī)律繼續(xù)作下去,在x軸的正半軸上得到點(diǎn)A1,A2,A3,…,An,則點(diǎn)A2018的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1+2+22+23+…+22018的值,可令S1+2+22+23+…+22018,則2S2+22+23+24+…22019,因此2SS220191,即S220191.依照以上的方法,計(jì)算出1+5+52+53+…52017的值為( 。

A. 52018﹣1 B. 52019﹣1 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A,動(dòng)直線x=t(0<t<8)與反比例函數(shù)的圖象交于點(diǎn)M,與直線AB交于點(diǎn)N.

(1)求k的值;

(2)當(dāng)t=4時(shí),求△BMN面積;

(3)若MA⊥AB,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形是邊長(zhǎng)為4的正方形點(diǎn)POA邊上任意一點(diǎn)(與點(diǎn)不重合),連接CP,過(guò)點(diǎn)P,且,過(guò)點(diǎn)M,交于點(diǎn)聯(lián)結(jié),設(shè).

1)當(dāng)時(shí),點(diǎn)的坐標(biāo)為( ,

2)設(shè),求出的函數(shù)關(guān)系式,寫(xiě)出函數(shù)的定義域。

3)在軸正半軸上存在點(diǎn),使得是等腰三角形,請(qǐng)直接寫(xiě)出不少于4個(gè)符合條件的點(diǎn)的坐標(biāo)(用的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD.

(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度數(shù).

(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案