【題目】如圖,在中,外角的角平分線,反向延長(zhǎng)與線段延長(zhǎng)線交于點(diǎn)于點(diǎn)旋轉(zhuǎn),得到的交點(diǎn),延長(zhǎng)線的交點(diǎn),現(xiàn)有以下結(jié)論:

;

,則;

時(shí),

其中正確的結(jié)論是_____________________(填寫所有正確結(jié)論的序號(hào))

【答案】

【解析】

延長(zhǎng)BECD于點(diǎn)K,證明三角形AEK于三角形AEB全等即可判斷結(jié)論①正確與否;證明即可推出,由此判斷結(jié)論②;在中,可得AB的長(zhǎng),根據(jù)求解判斷結(jié)論③;求出直線ANAB的解析式,設(shè)直線CP的解析式為,直線CQ的解析式為,利用方程組求出PQ坐標(biāo),構(gòu)建方程求出k的值,再求出PQ即可判斷結(jié)論④.

解:①延長(zhǎng)BECD于點(diǎn)K,

可證明,

故結(jié)論①正確;

②∵

故結(jié)論②錯(cuò)誤;

③在中,,

故結(jié)論③正確;

④由結(jié)論③可知,

∴直線AN的解析式為:,直線AB的解析式為:

設(shè)直線CP的解析式為,則直線CQ的解析式為

據(jù)此可得出

,得到

解得,(舍去)

結(jié)論④錯(cuò)誤;

故答案為:①③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A、F、C、D四點(diǎn)在同一條直線上,AF=CD,ABDE,且AB=DE.

(1)求證:△ABC≌△DEF;

(2)若EF=3,DE=4,DEF=90°,請(qǐng)直接寫出使四邊形EFBC為菱形時(shí)AF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題7)如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹DE的高度.他們?cè)谶@棵樹正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB2,臺(tái)階AC的坡度為 (ABBC=),且BC、E三點(diǎn)在同一條盲線上。請(qǐng)根據(jù)以上殺件求出樹DE的高度(測(cè)傾器的高度忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了節(jié)省材料,某農(nóng)場(chǎng)主利用圍墻(圍墻足夠長(zhǎng))為一邊,用總長(zhǎng)為的籬笆圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,則長(zhǎng)為______時(shí),能圍成的矩形區(qū)域的面積最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸,軸分別交于兩點(diǎn),動(dòng)點(diǎn)在線段上移動(dòng)(與不重合),以為頂點(diǎn)作軸于點(diǎn)

1)求點(diǎn)和點(diǎn)的坐標(biāo);

2)求證:

3)是否存在點(diǎn)使得是等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的對(duì)稱軸與軸的交點(diǎn)橫坐標(biāo)是分式方程的解,若拋物線與軸的一個(gè)交點(diǎn)為,與軸的交點(diǎn)

1)求拋物線的解析式;

2)若點(diǎn)坐標(biāo)為,連結(jié),若點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),求的最小值.

3)連結(jié)過點(diǎn)軸的垂線在第三象限中的拋物線上取點(diǎn)過點(diǎn)作直線的垂線交直線于點(diǎn),過點(diǎn)軸的平行線交于點(diǎn),已知

①求點(diǎn)的坐標(biāo);

②在拋物線上是否存在一點(diǎn),使得成立?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:我們學(xué)習(xí)過直角三角形斜邊上的中線等于斜邊的一半,即:如圖1,在中,,若點(diǎn)是斜邊的中點(diǎn),則

靈活應(yīng)用:如圖2,中,,點(diǎn)的中點(diǎn),將沿翻折得到連接

1)線段的長(zhǎng)是

2)判斷的形狀并說(shuō)明理由;

3)線段的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖正方形的頂點(diǎn)上的動(dòng)點(diǎn),與交于P、Q兩點(diǎn),.

1)當(dāng)時(shí),

①求的度數(shù);

②求以為邊長(zhǎng)的正方形面積;

2)當(dāng)上運(yùn)動(dòng)時(shí),始終保持,連接,則面積的最小值為 (直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠MON及其邊上一點(diǎn)A,以點(diǎn)A為圓心,AO長(zhǎng)為半徑畫弧,分別交OM,ON于點(diǎn)BC,再以點(diǎn)C為圓心,AC長(zhǎng)為半徑畫弧,恰好經(jīng)過點(diǎn)B,錯(cuò)誤的結(jié)論是( .

A.B.OCB90°C.MON30°D.OC2BC

查看答案和解析>>

同步練習(xí)冊(cè)答案