如圖,E,F(xiàn)在BC上,BE=CF,AB=CD,AB∥CD.求證:
(1)△ABF≌△DCE.
(2)AF∥DE.
【考點(diǎn)】全等三角形的判定與性質(zhì).
【專題】證明題.
【分析】(1)由等式的性質(zhì)就可以得出BF=CE,由平行線的性質(zhì)就可以得出∠B=∠C,根據(jù)SAS就可以得出結(jié)論;
(2)由△ABF≌△DCE就可以得出∠AFB=∠DEC就可以得出結(jié)論.
【解答】證明:∵BE=CF,
∴BE+EF=CF+EF,
∴BF=CE.
∵AB∥CD,
∴∠B=∠C.
在△ABF和△DCE中
,
∴△ABF≌△DCE(SAS);
(2)∵△ABF≌△DCE,
∴∠AFB=∠DEC,
∴AF∥DE.
【點(diǎn)評(píng)】本題考查了等式的性質(zhì)的運(yùn)用,平行線的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)證明三角形全等是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列長(zhǎng)度的各組線段,可以組成一個(gè)三角形三邊的是( )
A.1,2,3 B.3,3,6 C.1,5,5 D.4,5,10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,∠AOB=30°,點(diǎn)M、N分別在邊OA、OB上,且OM=1,ON=3,點(diǎn)P、Q分別在邊OB、OA上,則MP+PQ+QN的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分線MN交AC于點(diǎn)D,則∠A的度數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=5cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),PN+PM+MN的最小值是5cm,則∠AOB的度數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,下列圖案是我國(guó)幾家銀行的標(biāo)志,其中軸對(duì)稱圖形有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在第1個(gè)△ABA1中,∠B=52°,AB=A1B,在A1B上取一點(diǎn)C,延長(zhǎng)AA1到A2,使得A1A2=A1C;在A2C上取一點(diǎn)D,延長(zhǎng)A1A2到A3,使得A2A3=A2D;…,按此作法進(jìn)行下去,第2014個(gè)三角形的底角的度數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
把一張長(zhǎng)方形紙片按如圖方式折疊,使頂點(diǎn)B和點(diǎn)D重合,折痕為EF.若AB=3cm,BC=5cm,求:
(1)DF的長(zhǎng);
(2)重疊部分△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
將長(zhǎng)方形紙片ABCD按如下順序進(jìn)行折疊:對(duì)折、展平,得折痕EF(如圖①);沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B′處(如圖②);展平,得折痕GC(如圖③);請(qǐng)你求出圖②中∠BCB′的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com