【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點(diǎn)P,過(guò)A作直線ACPC交⊙O于另一點(diǎn)D,連接PA、PB

(1)求證:AP平分∠CAB;

(2)P是直徑AB上方半圓弧上一動(dòng)點(diǎn),⊙O的半徑為2,則

①當(dāng)弦AP的長(zhǎng)是_____時(shí),以A,O,P,C為頂點(diǎn)的四邊形是正方形;

②當(dāng)的長(zhǎng)度是______時(shí),以A,D,OP為頂點(diǎn)的四邊形是菱形.

【答案】(1)證明見解析;(2)2;②ππ

【解析】

(1)利用切線的性質(zhì)得OPPC,再證明ACOP得到∠1=∠3,加上∠2=∠3,所以∠1=∠2

(2)①當(dāng)∠AOP90°,根據(jù)正方形的判定方法得到四邊形AOPC為正方形,從而得到AP2;

②根據(jù)菱形的判定方法,當(dāng)ADAPOPOD時(shí),四邊形ADOP為菱形,所以AOPAOD為等邊三角形,然后根據(jù)弧長(zhǎng)公式計(jì)算的長(zhǎng)度.當(dāng)ADDPPOOA時(shí),四邊形ADPO為菱形,AODDOP為等邊三角形,則∠AOP120°,根據(jù)弧長(zhǎng)公式計(jì)算的長(zhǎng)度.

(1)PC切⊙O于點(diǎn)P,

OPPC,

ACPC

ACOP,

∴∠1=∠3,

OPOA

∴∠2=∠3,

∴∠1=∠2,

AP平分∠CAB;

(2)①當(dāng)∠AOP90°,四邊形AOPC為矩形,而OAOP,此時(shí)矩形AOPC為正方形,

APOP2

②當(dāng)ADAPOPOD時(shí),四邊形ADOP為菱形,AOPAOD為等邊三角形,則∠AOP60°,的長(zhǎng)度==π

當(dāng)ADDPPOOA時(shí),四邊形ADPO為菱形,AODDOP為等邊三角形,則∠AOP120°,的長(zhǎng)度=

故答案為2ππ

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠B90°,∠C60°,BCCD8,將四邊形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF,則BE的長(zhǎng)為(  )

A. 1B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=-[x-22+n]x軸交于點(diǎn)Am-2,0)和B2m+30)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連結(jié)BC

1)求mn的值;

2)如圖,點(diǎn)N為拋物線上的一動(dòng)點(diǎn),且位于直線BC上方,連接CN、BN.求NBC面積的最大值;

3)如圖,點(diǎn)M、P分別為線段BC和線段OB上的動(dòng)點(diǎn),連接PM、PC,是否存在這樣的點(diǎn)P,使PCM為等腰三角形,PMB為直角三角形同時(shí)成立?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是米的旗桿,從辦公樓頂端測(cè)得旗桿頂端的俯角,旗桿底端到大樓前梯坎底邊的距離米,梯坎坡長(zhǎng)米,梯坎坡度,求大樓的高度.(精確到米,參與數(shù)據(jù): ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=﹣x2x+2與x軸交于點(diǎn)A,B兩點(diǎn),交y軸于C點(diǎn),拋物線的對(duì)稱軸與x軸交于H點(diǎn),分別以OC、OA為邊作矩形AECO

(1)求直線AC的解析式;

(2)如圖2,P為直線AC上方拋物線上的任意一點(diǎn),在對(duì)稱軸上有一動(dòng)點(diǎn)M,當(dāng)四邊形AOCP面積最大時(shí),求|PMOM|的最大值.

(3)如圖3,將△AOC沿直線AC翻折得△ACD,再將△ACD沿著直線AC平移得△A'CD'.使得點(diǎn)A′、C'在直線AC上,是否存在這樣的點(diǎn)D′,使得△AED′為直角三角形?若存在,請(qǐng)求出點(diǎn)D′的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)是4,點(diǎn)EAB邊上一動(dòng)點(diǎn),連接CE,過(guò)點(diǎn)BBGCE于點(diǎn)G,點(diǎn)PAB邊上另一動(dòng)點(diǎn),則PD+PG的最小值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,直線yx軸、y軸分別交于點(diǎn)B,C,拋物線y過(guò)B,C兩點(diǎn),且與x軸的另一個(gè)交點(diǎn)為點(diǎn)A,連接AC

1)求拋物線的解析式;

2)在拋物線上是否存在點(diǎn)D(與點(diǎn)A不重合),使得SDBCSABC,若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)有寬度為2,長(zhǎng)度足夠長(zhǎng)的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對(duì)邊交拋物線于點(diǎn)P和點(diǎn)Q,交直線CB于點(diǎn)M和點(diǎn)N,在矩形平移過(guò)程中,當(dāng)以點(diǎn)P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)市場(chǎng)調(diào)查得知,某種商品的銷售期為100天,設(shè)該商品銷量單價(jià)為y(萬(wàn)元/kg),y與時(shí)間t(天)函數(shù)關(guān)系如下圖所示,其中線段AB表示前50天銷售單價(jià)y(萬(wàn)元/kg)與時(shí)間t(天)的函數(shù)關(guān)系;線段BC的函數(shù)關(guān)系式為y=-t+m.該商品在銷售期內(nèi)的銷量如下表:

時(shí)間t(天)

0<t≤50

50<t≤100

銷量(kg)

200

(1)分別求出當(dāng)0<t≤50和50<t≤100時(shí)y與t的函數(shù)關(guān)系式;

(2)設(shè)每天的銷售收入為w(萬(wàn)元),則當(dāng)t為何值時(shí),w的值最大?求出最大值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車為大眾出行提供了方便,如圖為單車實(shí)物圖,如圖為單車示意圖,AB與地面平行,點(diǎn)A、B、D共線,點(diǎn)D、F、G共線,坐墊C可沿射線BE方向調(diào)節(jié).已知,∠ABE=70°,∠EAB=45°,車輪半徑為0.3m,BE=0.4m.小明體驗(yàn)后覺(jué)得當(dāng)坐墊C離地面高度為0.9m時(shí)騎著比較舒適,求此時(shí)CE的長(zhǎng).(結(jié)果精確到1cm)參考數(shù)據(jù):sin70≈0.94,cos70≈0.34,tan70≈2.75,≈1.41

查看答案和解析>>

同步練習(xí)冊(cè)答案