【題目】某通信公司實行的部分套餐資費標(biāo)準(zhǔn)如下:

套餐類型

月費

(元/月)

套餐內(nèi)包含內(nèi)容

套餐外資費

國內(nèi)數(shù)據(jù)流量(MB

國內(nèi)主叫(分鐘)

國內(nèi)流量

國內(nèi)主叫

套餐1

18

100

0

029/MB

019/分鐘

套餐2

28

100

50

套餐3

38

300

50

套餐4

48

500

50

小明每月大約使用國內(nèi)數(shù)據(jù)流量200MB,國內(nèi)主叫200分鐘,若想使每月付費最少,則他應(yīng)預(yù)定的套餐是(

A.套餐1B.套餐2C.套餐3D.套餐4

【答案】C

【解析】

根據(jù)付費情況分別計算出四個套餐下,使用國內(nèi)數(shù)據(jù)流量200MB,國內(nèi)主叫200分鐘時應(yīng)付的費用,然后進(jìn)行比較即可得出答案.

A 套餐1(元);

B 套餐2(元);

C 套餐3(元);

D 套餐4(元);

85.5>85>76.5>66.5套餐3付費最少.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校隨機(jī)抽取部分學(xué)生就“你是否喜歡網(wǎng)課”進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果進(jìn)行統(tǒng)計后,繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.

1)在統(tǒng)計表中, ,

2)求出扇形統(tǒng)計圖中“喜歡”網(wǎng)課所對應(yīng)扇形的圓心角度數(shù);

3)己知該校共有2 000名學(xué)生,試估計該校“非常喜歡”網(wǎng)課的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形中,相交于點,過點作射線,點是射線上一動點,連接于點,以為一邊,作正方形,且點在正方形的內(nèi)部,連接

1)求證:;

2)設(shè),正方形的邊長為,求關(guān)于的函數(shù)關(guān)系式,并寫出定義域;

3)連接,當(dāng)是等腰三角形時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接2020年高中招生考試,某中學(xué)對全校九年級學(xué)生進(jìn)行了一次數(shù)學(xué)摸底考試,并隨機(jī)抽取了部分學(xué)生的測試成績作為樣本進(jìn)行分析,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給信息,解答下列問題:

1)請將表示成績類別為“中”的條形統(tǒng)計圖補(bǔ)充完整;

2)請將表示成績類別為“優(yōu)”的扇形統(tǒng)計圖補(bǔ)充完整,并計算成績類別為“優(yōu)”的扇形所對應(yīng)的圓心角的度數(shù);

3)學(xué)校九年級共有人參加了這次數(shù)學(xué)考試,估算該校九年級共有多少名學(xué)生的數(shù)學(xué)成績可以達(dá)到優(yōu)秀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為,動點從點出發(fā)以的速度沿著邊運(yùn)動,到達(dá)點停止運(yùn)動,另一動點同時從點出發(fā),以的速度沿著邊向點運(yùn)動,到達(dá)點停止運(yùn)動,設(shè)點運(yùn)動時間為的面積為,則關(guān)于的函數(shù)圖象是()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線x軸交于A,B兩點,點A在點B的左側(cè).

1)若點B的坐標(biāo)為

①求拋物線的對稱軸;

②當(dāng)時,函數(shù)值y的取值范圍,求n的值;

2)將拋物線在x軸上方的部分沿x軸翻折,得到新的函數(shù)圖象,當(dāng)時,此函數(shù)的值隨x的增大而增大,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,CD是斜邊AB上的高,以CD為直徑作⊙O分別交ACBC于點E,F,過點E作⊙O的切線,分別交直線BCAB于點H,G

1)求證:HG=GB

2)若⊙O的直徑為4,連接OG,交⊙O于點M.填空:

①連接OE,ME,DM.當(dāng)EG=____時,四邊形OEMD為菱形;

②連接OE.當(dāng)EG=_________時,四邊形OEAG為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,By軸上的動點,以AB為邊構(gòu)造,使點Cx軸上,BC的中點,則PM的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx﹣10經(jīng)過點A(12,0)和B(a,﹣5),雙曲線y=經(jīng)過點B.

(1)求直線y=kx﹣10和雙曲線y=的函數(shù)表達(dá)式;

(2)點C從點A出發(fā),沿過點A與y軸平行的直線向下運(yùn)動,速度為每秒1個單位長度,點C的運(yùn)動時間為t(0<t<12),連接BC,作BDBC交x軸于點D,連接CD,

當(dāng)點C在雙曲線上時,求t的值;

在0<t<6范圍內(nèi),BCD的大小如果發(fā)生變化,求tanBCD的變化范圍;如果不發(fā)生變化,求tanBCD的值.

當(dāng)DC=時,請直接寫出t的值.

查看答案和解析>>

同步練習(xí)冊答案