【題目】如圖,在四邊形ABCD中,AB=CD,DEAC,BFAC,垂足分別為E,F,且DE=BF.求證:

1AE=CF;

2)四邊形ABCD是平行四邊形.

【答案】1)見解析;(2)見解析

【解析】

1)直接利用HL證明RtDECRtBFA即可;

2)利用全等三角形的性質(zhì)結(jié)合平行四邊形的判定方法分析得出答案.

證明:(1)∵DEACBFAC,

∴∠DEC=BFA=90°

RtDECRtBFA中,,

RtDECRtBFAHL),

EC=AF,

EC-EF=AF-EF,即AE=FC;

2)∵RtDECRtBFA,

∴∠DCE=BAF,

ABDC,

又∵AB=DC,

∴四邊形ABCD是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝新中國成立70周年,某校組織八年級全體學(xué)生參加“恰同學(xué)少年,憶崢嶸歲月”新中國成立70周年知識競賽活動.將隨機(jī)抽取的部分學(xué)生成績進(jìn)行整理后分成5組,5060分()的小組稱為“學(xué)童”組,6070()的小組稱為“秀才”組,7080()的小組稱為“舉人”組,8090()的小組稱為“進(jìn)士”組,90100()的小組稱為“翰林”組,并繪制了不完整的頻數(shù)分布直方圖如下,請結(jié)合提供的信息解答下列問題:

1)若“翰林”組成績的頻率是12.5%,請補(bǔ)全頻數(shù)分布直方圖;

2)在此次比賽中,抽取學(xué)生的成績的中位數(shù)在 組;

3)學(xué)校決定對成績在70100()的學(xué)生進(jìn)行獎勵,若八年級共有336名學(xué)生,請通過計(jì)算說明,大約有多少名學(xué)生獲獎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時,車載電腦顯示還能行駛50千米.假設(shè)加油前、后汽車都以100千米/小時的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時間t(小時)之間的關(guān)系如圖所示.

(1)求張師傅加油前油箱剩余油量y(升)與行駛時間t(小時)之間的關(guān)系式;

(2)求出a的值;

(3)求張師傅途中加油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯誤的是

A. 連續(xù)拋一均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一均勻硬幣,平均100次出現(xiàn)正面朝上50

D. 通過拋一均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=3,點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201988日至18日,第十八屆世警會首次來到亞洲在成都舉辦武侯區(qū)以相關(guān)事宜為契機(jī),進(jìn)一步改善區(qū)域生態(tài)環(huán)境.在天府吳園道部分地段種植白芙蓉和醉芙蓉兩種花卉.經(jīng)市場調(diào)查,種植費(fèi)用y(元)與種植面積xm2)之間的函數(shù)關(guān)系如圖所示.

1)請直接寫出兩種花卉yx的函數(shù)關(guān)系式;

2)白芙蓉和醉芙蓉兩種花卉的種植面積共1000m2,若白芙蓉的種植面積不少于100m2且不超過醉芙蓉種植面積的3倍,那么應(yīng)該怎樣分配兩種花卉的種植面積才能使種植總費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20028月在北京召開的國際數(shù)學(xué)家大會會標(biāo)取材于我國古代數(shù)學(xué)家趙爽的《勾股圓方圖》,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短直角邊為a,較長直角邊為b,那么(a+b)2的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD中,點(diǎn)E、F、G、H分別在AB、BC、CDDA上,且AEBFCGDH

1)四邊形EFGH是正方形嗎?為什么?

2)若正方形ABCD的邊長為4cm,且AEBFCGDH3cm,請求出四邊形EFGH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A,B的坐標(biāo)分別為(1,0),(2,0).若二次函數(shù)y=x2+(a﹣3)x+3的圖象與線段AB只有一個交點(diǎn),則a的取值范圍是_______________________

查看答案和解析>>

同步練習(xí)冊答案