如圖,已知直線y=x+4與x軸、y軸分別相交于點(diǎn)A、B,點(diǎn)M是線段AB(中點(diǎn)除外)上的動(dòng)點(diǎn),以點(diǎn)M為圓心,OM的長為半徑作圓,與x軸、y軸分別相交于點(diǎn)C、D.
(1)設(shè)點(diǎn)M的橫坐標(biāo)為a,則點(diǎn)C的坐標(biāo)為 ,點(diǎn)D的坐標(biāo)為 (用含有a的代數(shù)式表示);
(2)求證:AC=BD;
(3)若過點(diǎn)D作直線AB的垂線,垂足為E.
①求證: AB=2ME;
②是否存在點(diǎn)M,使得AM=BE?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
⑴C(2a,0),D(0,2a+8)
⑵方法一:由題意得:A(-4,0),B(0,4)
-4<a<0,且a≠2,
① 當(dāng)2a+8<4,即-4<a<-2時(shí)
AC=-4-2a,BD=4-(2a+8)=-4-2a
∴AC=BD
② 當(dāng)2a+8>4,即-2<a<0時(shí)
同理可證:AC=BD
綜上:AC=BD
方法二:①當(dāng)點(diǎn)D在B、O之間時(shí),
連CD,∵∠COD=90°
∴圓心M在CD上,
過點(diǎn)D作DF∥AB,
∵點(diǎn)M為CD中點(diǎn),
∴MA為△CDF中位線,
∴AC=AF,
又DF∥AB,
∴,
而BO=AO
∴AF=BD
∴AC=BD
②點(diǎn)D在點(diǎn)B上方時(shí),同理可證:AC=BD
綜上:AC=BD
⑶方法一
①A(-4,0),B(0,4),D(0,2a+8),M(a,a+4),△BDE、△ABO均為等腰直角三角形,
E的縱坐標(biāo)為a+6,∴ME=(yE-yM)==2
AB=4
∴AB=2ME
②AM=( yM-yA)=(a+4),BE=|yE-yB|=|a+2|,
∵AM=BE
又-4<a<0,且a≠2,
10 當(dāng)-4<a<-2時(shí)
(a+4)= -(a+2)
∴a=-3
M(-3,1)
20 當(dāng)-2<a<0時(shí)
(a+4)= (a+2)
∴a不存在
方法二:
①當(dāng)點(diǎn)D在B、O之間時(shí),作MP⊥x軸于點(diǎn)P、MQ⊥y軸于點(diǎn)Q,取AB中點(diǎn)N,
在Rt△MNO與Rt△DEM中,MO=MD
∠MON=450-∠MOP
∠EMD=450-∠DMQ=450-∠OMQ=450-∠MOP
∴∠MON=∠EMD
∴Rt△MNO≌Rt△DEM
∴MN=ED=EB
∴AB=2NB=2(NE+EB)=2(NE+MN)=2ME
當(dāng)點(diǎn)D在點(diǎn)B上方時(shí),同理可證
②當(dāng)點(diǎn)D在B、O之間時(shí),
由①得MN=EB,
∴AM=NE
若AM=BE,則AM=MN=NE=EB=AB=
∴M(-3,1)
點(diǎn)D在點(diǎn)B上方時(shí),不存在。
【解析】(1)直接利用垂徑定理可知C(2a,0),D(0,2a+8);
(2)本題可用直角坐標(biāo)系中兩點(diǎn)間的距離公式分別求算出AC=-4-2a,BD=4-(2a+8)=-4-2a,所以AC=BD;
(3)①根據(jù)A(-4,0),B(0,4),D(0,2a+8),M(a,a+4),可知△BDE、△ABO均為等腰直角三角形,E的縱坐標(biāo)為a+6,可求得,,所以AB=2ME;
②AM=( -)=(a+4),BE=||=|a+2|,AM=BE,結(jié)合條件-4<a<0,且a≠2,a=-3,可知M(-3,1);當(dāng)-2<a<0時(shí),a不存在。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
3 |
8 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com