【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(0,4),點(diǎn)M是線(xiàn)段AB上任意一點(diǎn)(A,B兩點(diǎn)除外)。
(1)求直線(xiàn)AB的解析式;
(2)過(guò)點(diǎn)M分別作MC⊥OA于點(diǎn)C,MD⊥OB于點(diǎn)D,當(dāng)點(diǎn)M在AB上運(yùn)動(dòng)時(shí),你認(rèn)為四邊形OCMD的周長(zhǎng)是否發(fā)生變化?并說(shuō)明理由;
(3)當(dāng)點(diǎn)M把線(xiàn)段AB分成的兩部分的比為1:3時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo)。
【答案】(1)AB的解析式為.(2)不發(fā)生變化;理由見(jiàn)解析;(3)M(1,3)或M(3,1)
【解析】(1)設(shè)直線(xiàn)AB的解析式為,
則
解得:
所以AB的解析式為.
(2)不發(fā)生變化;理由如下:
設(shè)M點(diǎn)的坐標(biāo)為(, )
MD= , MC=
四邊形OCMD的周長(zhǎng)=2(MD+MC)=
所以四邊形OCMD的周長(zhǎng)不發(fā)生變化.
(3)∵DM∥x軸
∴
①當(dāng)BM:MA=1:3時(shí),,即,DM=1,則點(diǎn)M的橫坐標(biāo)為1,此時(shí)縱坐標(biāo),M(1,3)
②當(dāng)BM:MA=3:1時(shí), ,即,DM=3,則點(diǎn)M的橫坐標(biāo)為3,
此時(shí)縱坐標(biāo),M(3,1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B,C重合).
第一次操作:將線(xiàn)段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時(shí),記為點(diǎn)G;
第二次操作:將線(xiàn)段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時(shí),記為點(diǎn)H;依次操作下去…
(1)圖2中的△EFD是經(jīng)過(guò)兩次操作后得到的,其形狀為 ,
(2)若經(jīng)過(guò)三次操作可得到四邊形EFGH.
①請(qǐng)判斷四邊形EFGH的形狀為 ,此時(shí)AE與BF的數(shù)量關(guān)系是 ;
②以①中的結(jié)論為前提,設(shè)AE的長(zhǎng)為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】去括號(hào)后等于a﹣b+c的是( )
A.a﹣(b+c)
B.a+(b﹣c)
C.a﹣(b﹣c)
D.a+(b+c)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從地面豎直向上拋出一個(gè)小球,小球的高度h(米)與運(yùn)動(dòng)時(shí)間t(秒)之間的關(guān)系式為h=30t﹣5t2 , 那么小球拋出秒后達(dá)到最高點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,以邊長(zhǎng)為8的正方形紙片ABCD的邊AB為直徑作⊙O,交對(duì)角線(xiàn)AC于點(diǎn)E.
(1)線(xiàn)段AE=____________;
(2)如圖2,以點(diǎn)A為端點(diǎn)作∠DAM=30°,交CD于點(diǎn)M,沿AM將四邊形ABCM剪掉,使Rt△ADM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)(如圖3),設(shè)旋轉(zhuǎn)角為α(0°<α<150°),旋轉(zhuǎn)過(guò)程中AD與⊙O交于點(diǎn)F.
①當(dāng)α=30°時(shí),請(qǐng)求出線(xiàn)段AF的長(zhǎng);
②當(dāng)α=60°時(shí),求出線(xiàn)段AF的長(zhǎng);判斷此時(shí)DM與⊙O的位置關(guān)系,并說(shuō)明理由;
③當(dāng)α=___________°時(shí),DM與⊙O相切。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BD平分∠ABC,BC的垂直平分線(xiàn)交BC于點(diǎn)E,交BD于點(diǎn)F,連結(jié)CF.若∠A=60°,∠ACF =45°,則∠ABC的度數(shù)為( )
A. 45° B. 50° C. 55° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)所學(xué)知識(shí)填空.
(1)如圖①,△ABE,△ACD都是等邊三角形,若CE=6,則BD的長(zhǎng)=;
(2)如圖②,△ABC中,∠ABC=30°,AB=3,BC=4,D是△ABC外一點(diǎn),且△ACD是等邊三角形,則BD的長(zhǎng)= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com