【題目】定義:我們把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,那么四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質(zhì)探究:
①如圖1,垂美四邊形ABCD兩組對邊AB、CD與BC、AD之間有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給出證明.
②如圖3,在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在外部作等腰三角形ABD和等腰三角形ACE,連接FD,FE,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;
(3)問題解決:
如圖4,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE、BG,GE,已知AC=2,AB=5.求GE的長度.
【答案】(1)四邊形ABCD是垂美四邊形,證明見解析 (2)①,證明見解析;②四邊形FMAN是矩形,證明見解析 (3)
【解析】
(1)根據(jù)垂直平分線的判定定理證明即可;
(2)①根據(jù)垂直的定義和勾股定理解答即可;②根據(jù)在Rt△ABC中,點F為斜邊BC的中點,可得,再根據(jù)△ABD和△ACE是等腰三角形,可得,再由(1)可得,,從而判定四邊形FMAN是矩形;
(3)根據(jù)垂美四邊形的性質(zhì)、勾股定理、結(jié)合(2)的結(jié)論計算即可.
(1)四邊形ABCD是垂美四邊形
連接AC、BD
∵
∴點A在線段BD的垂直平分線上
∵
∴點C在線段BD的垂直平分線上
∴直線AC是線段BD的垂直平分線
∴
∴四邊形ABCD是垂美四邊形;
(2)①,理由如下
如圖,已知四邊形ABCD中,,垂足為E
由勾股定理得
②四邊形FMAN是矩形,理由如下
如圖,連接AF
∵在Rt△ABC中,點F為斜邊BC的中點
∵△ABD和△ACE是等腰三角形
由(1)可得,
∵
∴四邊形FMAN是矩形;
(3)連接CG、BE,
,即
在△AGB和△ACE中
∵
,即
∴四邊形CGEB是垂美四邊形
由(2)得
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一列有理數(shù)﹣1,2,﹣3,4,﹣5,6,……,如圖所示有序排列.根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢茫?/span>C的位置)是有理數(shù)4,那么,“峰6”中C的位置是有理數(shù)_____,2018應(yīng)排在A,B,C,D,E中的_____位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ADC=72°,AD的垂直平分線交對角線BD于點P , 垂足為E , 連接CP , 求∠CPB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中∠DAE=25°,AE交對角線BD于E點,那么∠BEC等于( 。
A.45°
B.60°
C.70°
D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點叫做整點,設(shè)坐標(biāo)軸的單位長度為1cm, 整點P從原點0出發(fā),速度為1cm/s, 且整點P做向上或向右運動(如圖1所示.運動時間(s)與整點(個)的關(guān)系如下表:
整點P從原點出發(fā)的時間(s) | 可以得到整點P的坐標(biāo) | 可以得到整點P的個數(shù) |
1 | (0,1)(1,0) | 2 |
2 | (0,2)(1,1)(2,0) | 3 |
3 | (0,3)(1,2)(2,1)(3,0) | 4 |
. | · | . |
根據(jù)上表中的規(guī)律,回答下列問題:
(1)當(dāng)整點P從點0出發(fā)4s時,可以得到的整點的個數(shù)為______個.
(2)當(dāng)整點P從點O出發(fā)8s時,在直角坐標(biāo)系中描出可以得到的所有整點,并順次連結(jié)這些整點.
(3)當(dāng)整點P從點0出發(fā)______s時,可以得到整點(16,4)的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AB=6,BC=8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長為( )
A. 6B. 5C. 4D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)對(a,b)、(c,d),定義:當(dāng)且僅當(dāng)a=c且b=d時,(a,b)=(c,d);并定義其運算如下: (a,b)※(c,d)=(ac﹣bd,ad+bc),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x,y)※(1,﹣1)=(1,3),則xy的值是( )
A.﹣1
B.0
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,對角線與交于點.過點作的平行線,過點作的平行線,兩直線相交于點.
(1)求證:四邊形是矩形;
(2)若,,則菱形的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com