若直線y=x-2與拋物線y=ax2+bx+c相交于A(2,m)、B(n,3),拋物線對稱軸為x=3,求拋物線解析式.
【答案】分析:根據(jù)直線y=x-2與拋物線y=ax2+bx+c相交于A(2,m)、B(n,3),先求出m,n的值,再把A,B的坐標(biāo)代入,利用拋物線對稱軸為x=3即可求出解析式.
解答:解:∵直線y=x-2過點A(2,m)、B(n,3),
∴m=0,n=5,
∴A(2,0)、B(5,3),分別代入y=ax2+bx+c,拋物線對稱軸為x=3,

綜合上述三式解得:a=1,b=-6,c=8,
∴拋物線解析式為:y=x2-6x+8.
點評:本題考查了待定系數(shù)法求二次函數(shù)解析式,難度一般,關(guān)鍵掌握用待定系數(shù)法求函數(shù)解析式,注意細(xì)心運(yùn)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 初三數(shù)學(xué) 華東師大(新課標(biāo)2001/3年初審) 華東師大版 題型:044

已知,如圖,在平面直角坐標(biāo)系xOy中,拋物線l1的解析式為y=-x2,將拋物線l1平移后得到拋線物l2,若拋物線l2經(jīng)過點(0,2),且其頂點A的橫坐標(biāo)為最小正整數(shù).

(1)求拋物線l2的解析式;

(2)說明將拋物線l1如何平移得到拋物線l2;

(3)若將拋物線l2沿其對稱軸繼續(xù)上下平移,得到拋物線l3,設(shè)拋物線l3的頂點為B,直線OB與拋物線l3的另一個交點為C.當(dāng)OB=OC時,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期末題 題型:解答題

如圖,在平面直角坐標(biāo)系中,一拋物線的對稱軸為直線x=1,與y軸負(fù)半軸交于C點,與x軸交于A、B兩點,其中B點的坐標(biāo)為(3,0),且OB=OC。
(1)求此拋線的解析式;
(2)若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當(dāng)點P運(yùn)動到什么位置時,△APG的面積最大?求出此時P點的坐標(biāo)和△APG的最大面積;
(3)若平行于x軸的直線與該拋物線交于M、N兩點(其中點M在點N的右側(cè)),在x軸上是否存在點Q,使△MNQ為等腰三角形?若存在,請求出點Q的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河南省期中題 題型:解答題

已知,如圖,在平面直角坐標(biāo)系中,拋物線的解析式為,將拋物線平移后得到拋線物,若拋物線經(jīng)過點(0,2),且其頂點A的橫坐標(biāo)為最小正整數(shù)。
(1 )求拋物線l2 的解析式;
(2 )說明將拋物線l1 如何平移得到拋物線l2 ;
(3 )若將拋物線l2 沿其對稱軸繼續(xù)上下平移,得到拋物線l3 ,設(shè)拋物線l3 的頂點為B ,直線OB 與拋物線l3 的另一個交點為C .當(dāng)OB=OC 時,求點C 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知m、n是方程的兩個實數(shù)根,且m<n,拋物線的圖像經(jīng)過點A(m,0)、B(0,n).  

(1)求這個拋物線的解析式;

(2)設(shè)(1)中拋物線與x軸的另一交點為C,拋物線的

頂點為D,試求出點C、D的坐標(biāo)和△BCD的面積;

(注:拋物線的頂點坐標(biāo)為

(3)P是線段OC上的一點,過點P作PH⊥x軸,與拋

物線交于H點,若直線BC把△PCH分成面積之比

為2:3的兩部分,請求出P點的坐標(biāo).              

查看答案和解析>>

同步練習(xí)冊答案