【題目】如圖,在ABCD中,AH∥CG,且分別交對角線BD于H、G,連接CH和AG,求證:∠CHG=∠AGH.
【答案】證明見解析.
【解析】
根據(jù)題意由AH∥CG得∠AHD=∠CGB,再由四邊形ABCD是平行四邊形知AD∥BC且AD=BC,據(jù)此得∠ADH=∠CBG,從而證△ADH≌△CBG得AH=CG,結(jié)合AH∥CG知四邊形AHCG是平行四邊形,繼而得CH∥AG,由平行線的性質(zhì)可得答案.
解:∵AH∥CG,
∴∠AHG=∠CGH,
∴180°﹣∠AHG=180°﹣∠CGH,即∠AHD=∠CGB.
∵四邊形ABCD是平行四邊形,
∴AD∥BC,且AD=BC,
∴∠ADH=∠CBG,
∴△ADH≌△CBG(AAS),
∴AH=CG,
∵AH∥CG,
∴四邊形AHCG是平行四邊形,
∴CH∥AG,
∴∠CHG=∠AGH.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一枚質(zhì)地均勻的正四面體骰子,它的四個(gè)面上分別標(biāo)有數(shù)字0,1,2,3,如圖2,正方形ABCD的四個(gè)頂點(diǎn)處均有一個(gè)圈.課間,李麗和王萍利用它們玩跳圈游戲,玩法如下:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形ABCD的邊順時(shí)針分鐘連續(xù)跳幾個(gè)邊長.
例如:若從圈A起跳,第一擲得的數(shù)字為2,便沿正方形的邊順時(shí)針連續(xù)跳2個(gè)邊長,落到圈C,第二次擲得的數(shù)字為3,便從圈C開始,沿正方形的邊順時(shí)針連續(xù)跳3個(gè)邊長,落到圈B,….
設(shè)她們從圈A起跳.
(1)若李麗隨機(jī)擲這枚骰子一次,求她跳回圈A的概率;
(2)若王萍隨機(jī)擲這枚骰子兩次,請用列表法或畫樹狀圖求她最后跳回圈A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點(diǎn)P從點(diǎn)B出發(fā),沿矩形的邊由運(yùn)動,設(shè)點(diǎn)P運(yùn)動的路程為x,的面積為y,把y看作x的函數(shù),函數(shù)的圖像如圖2所示,則的面積為( )
A. 10 B. 16 C. 18 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某造紙企業(yè)為了更好地處理污水問題,決定購買10臺新型污水處理設(shè)備.甲、乙兩種型號的設(shè)備可選,其中每臺的價(jià)格,月處理污水量如表:
A型 | B型 | |
價(jià)格(萬元/) | 10 | 8 |
處理污水量(噸/月) | 180 | 150 |
(1)經(jīng)預(yù)算:該企業(yè)購買污水處理設(shè)備的資金不超過85萬元,你認(rèn)為該企業(yè)有哪幾種購買方案.
(2)在(1)的條件下,若每月需要處理的污水不低于1530噸,為了節(jié)約資金,請你為該企業(yè)設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1);
(2)m2m4+(﹣m3)2;
(3)(x+y)(2x﹣3y);
(4)(x+3)2﹣(x+1)(x﹣1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店為了迎接2017年4月23日的“世界讀書日”,計(jì)劃購進(jìn)A、B兩類圖書進(jìn)行銷售,若購進(jìn)A,B兩類圖書共1000本,其中購進(jìn)A類圖書的單價(jià)為16元/本,購進(jìn)B類圖書所需費(fèi)用y(元)與購買數(shù)量x(本)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若該書店購進(jìn)A類圖書400本,則購進(jìn)A、B兩類圖書共需要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,左邊的正方形與右邊的扇形面積相等,扇形的半徑和正方形的邊長都是2cm,則此扇形的弧長為( )cm.
A.4
B.4π
C.8
D.8﹣π
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com