【題目】已知⊙O的半徑為5,兩條平行弦AB、CD的長分別為68,求這兩條平行弦ABCD之間的距離( 。

A.3B.4C.17D.10

【答案】C

【解析】

先根據(jù)題意畫出符合條件的兩種情況,過OOEABE,交CDF,連接OA、OC,再根據(jù)垂徑定理和勾股定理即可求出OE、OF,然后結合圖形求出EF即可.

解:分為兩種情況:①當ABCDO的同旁時,如圖1,

OOEABE,交CDF,連接OAOC,

ABCD,∴OFCD,

則由垂徑定理得:AE=AB=3,CF=CD=4

RtOAE中,由勾股定理得:OE=

同理可求出OF=3,

EF=43=1

②當ABCDO的兩側時,如圖2,同法求出OE=4OF=3,

EF=4+3=7

ABCD的距離是17.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長相同的小正方形網(wǎng)格中,點A、B、CD都在這些小正方形的頂點上,ABCD相交于點P,則tanAPD的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2bxca≠0)的大致圖象如圖所示(1xh2,0xA1),下列結論:① 2ab0;abc0;OC2OA,則2bac = 4;④ 3ac0,其中正確的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場舉辦抽獎活動,規(guī)則如下:在不透明的袋子中有2個紅球和2個黑球,這些球除顏色外都相同,顧客每次摸出一個球,若摸到紅球,則獲得1份獎品,若摸到黑球,則沒有獎品。

1)如果小芳只有一次摸球機會,那么小芳獲得獎品的概率為  ;

2)如果小芳有兩次摸球機會(摸出后不放回),求小芳獲得2份獎品的概率。(請用畫樹狀圖列表等方法寫出分析過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACO的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD16cm,AE4cm

1)求O的半徑;

2)求OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC三個頂點的坐標分別為A1,1),B4,2),C34).

1)請畫出ABC向左平移5個單位長度后得到的A1B1C1;

2)請畫出ABC關于原點對稱的A2B2C2;

3)請直接判斷四邊形CBC2B2的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的頂點,,規(guī)定把正方形ABCD先沿x軸翻折,再向左平移1個單位長度為一次變換,如此這樣,連續(xù)經(jīng)過2019次變換后,正方形ABCD的對角線的交點M的坐標為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一塊腰長為的等腰直角三角板ABC放在平面直角坐標系中,點Ay軸正半軸上,直角頂點C的坐標為(2,0),點B在第二象限.

(1)求點A,點B的坐標;

(2)ABC沿x軸正方向平移后得到A′B′C′,點A′B′恰好落在反比例函數(shù)的圖象上,求平移的距離和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)y=|a|x2+bx+c的圖象經(jīng)過A(m,n)、B(0,y1)C(3m,n)、D(, y2)E(2,y3),則y1y2、y3的大小關系是( ).

A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1

查看答案和解析>>

同步練習冊答案