【題目】某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光明且溫度為18的條件下生長(zhǎng)最快的新品種.如圖,是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y()隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段足雙曲線 的一部分,請(qǐng)根據(jù)圖中信息解答下列問題:

(1)恒溫系統(tǒng)這天保持大棚內(nèi)溫度18的時(shí)間有多少小時(shí)?

(2)k值;

(3)當(dāng)x=15時(shí),大棚內(nèi)的溫度約為多少度?

【答案】(1) 10小時(shí);(2)k=216;(3)當(dāng)x=15時(shí),大棚內(nèi)的溫度約為14.4

【解析】試題分析:(1)直接利用圖象得出恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時(shí)間;

2)將(12,18)代入求出k的值即可;

3)當(dāng)x=18時(shí),求出y=12,即可得出答案.

試題解析:解:(1∵12 - 2=10恒溫系統(tǒng)在這天保持大棚溫度18℃的時(shí)間為10小時(shí);

2點(diǎn)B12,18)在雙曲線上,18=,解得:k=216;

3)當(dāng)x=15時(shí),y==14.4,所以當(dāng)x=15時(shí),大棚內(nèi)的溫度約為14.4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),我們把|x1x2|+|y1y2|叫做P1、P2兩點(diǎn)間的直角距離,記作d(P1,P2)

(1) P0(2,3),O為坐標(biāo)原點(diǎn),則d(O,P0)

(2)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足d(O,P)1,請(qǐng)寫出xy之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點(diǎn)P所組成的圖形;

(3)設(shè)P0(x0,y0)是一定點(diǎn),Q(x,y)是直線y=ax+b上的動(dòng)點(diǎn),我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離. P(a,3)到直線y=x1的直角距離為6,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,DEAC的垂直平分線.

1)求證:△BCD是等腰三角形;

2△BCD的周長(zhǎng)是a,BC=b,求△ACD的周長(zhǎng)(用含a,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)民在自己家承包的甲、乙兩片荒山上各栽了200棵蘋果樹,成活率均為96%,現(xiàn)已掛果.他隨意從甲山采摘了4棵樹上的蘋果,稱得質(zhì)量(單位:千克)分別為3640,4836;從乙山采摘了4棵樹上的蘋果,稱得質(zhì)量(單位:千克)分別為5036,40,34,將這兩組數(shù)據(jù)組成一個(gè)樣本,回答下列問題:

1樣本容量是多少?

2樣本平均數(shù)是多少?并估算出甲、乙兩山蘋果的總產(chǎn)量;

3甲、乙兩山哪個(gè)山上的蘋果長(zhǎng)勢(shì)較整齊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCDAC平分∠BAD,ADC=ACB=90,EAB的中點(diǎn),ACDE交于點(diǎn)F

(1)求證: =AB·AD;

(2)求證:CE//AD;

(3)AD=6, AB=8.求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(-1,5),B-1,0),C-4,3.

1)在圖中作出ABC關(guān)于y軸的對(duì)稱圖形A1B1C1;
2)寫出點(diǎn)A1、B1、C1的坐標(biāo);
3)在y軸上畫出點(diǎn)P,使PA+PC最小;
4)求六邊形AA1C1B1BC的面積..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將豎直放置的長(zhǎng)方形磚塊ABCD推倒至長(zhǎng)方形A'B'C'D'的位置長(zhǎng)方形ABCD的長(zhǎng)和寬分別為a,b,AC的長(zhǎng)為c.

1你能用只含a,b的代數(shù)式表示SABC,SC'A'D'S直角梯形A'D'BA?能用只含c的代數(shù)式表示SACA'?

2利用(1)的結(jié)論你能驗(yàn)證勾股定理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊鐵皮,拱形邊緣呈拋物線狀,MN=4,拋物線頂點(diǎn)處到邊MN的距離是4,要在鐵皮上截下一矩形ABCD,使矩形頂點(diǎn)B、C落在邊MN上,A、D落在拋物線上.

1)如圖建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線解析式;

2)設(shè)矩形ABCD的周長(zhǎng)為L,點(diǎn)C的坐標(biāo)為(m,0),求Lm的關(guān)系式(不要求寫自變量取值范圍).

3)問這樣截下去的矩形鐵皮的周長(zhǎng)能否等于9.5,若不等于9.5,請(qǐng)說明理由,若等于9.5,求出嗎的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是邊長(zhǎng)為3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從AB兩點(diǎn)出發(fā),分別沿ABBC方向勻速移動(dòng),它們的速度都是1 cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts),則(1BP cm,BQ cm.(用含t的代數(shù)式表示)

2)當(dāng)t為何值時(shí),PBQ是直角三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案