【題目】如圖,AB是△ABC外接圓⊙O的直徑,D是AB延長線上一點,且BD= AB,∠A=30°,CE⊥AB于E,過C的直徑交⊙O于點F,連接CD、BF、EF.

(1)求證:CD是⊙O的切線;
(2)求:tan∠BFE的值.

【答案】
(1)證明:∵AB是⊙O的直徑,

∴∠ACB=90°,

∵∠A=30°,

∴BC=

∵OB= ,BD=

∴BC=OB=BD,

∴BC= ,

∴OC⊥CD,

∵OC是半徑,

∴CD是⊙O的切線;


(2)解:過點E作EH⊥BF于H,

設EH=a,

∵CF是⊙O直徑,

∴∠CBF=90°=∠ACB,

∴∠CBF+∠ACB=180°,

∴AC∥BF,

∴∠ABF=∠A=30°,

∴BH= EH=a ,BE=2EH=2a,

∵CE⊥AB于E,

∴∠A+∠ABC=90°=∠ECB+∠ABC,

∴∠ECB=∠A=30°,

∴BC=2BE=4a,

∵∠BFC=∠A=30°,∠CBF=90°,

∴BF= =4a

∴FH=BF﹣BH=4a ﹣a =3a ,

∴tan∠BFE= = =


【解析】(1)根據已知條件證得OC⊥CD,再有切線的判定即可得到CD是⊙O的切線;
(2)過點E作EH⊥BF于H,設EH=a,利用角之間的關系可得到AC∥BF,從而得到BH和BE的長,進而可得到BF的長,此時可求得FH的長,即可求得所求結答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD相交于點O,AE=CF.

(1)求證:△BOE≌△DOF;

(2)連接DE,BF,若BD⊥EF,試探究四邊形EBFD的形狀,并對結論給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A、C分別在x軸上、y軸上,CB//OA,OA=8,OC=CB=4

1)直接寫出點A、B、C的坐標;

2)若動點P從原點O出發(fā)沿x軸以每秒2個單位長度的速度向右運動,當直線PC把四邊形OABC分成面積相等的兩部分停止運動,求P點運動時間;

3)在(2)的條件下,在y軸上是否存在一點Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等.若存在,求點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.

(1)求證:四邊形EFDG是菱形;
(2)求證:EG2= AFGF;
(3)若AG=6,EG=2 ,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在正方形ABCD中,AE∥BD,BE=BD,BE交AD于F.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關部門決定降低坡度,使新坡面的坡度為1:

(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次藝術作品制作比賽中,某小組八件作品的成績單位:分分別是:7、9、8、9、8、109、7,下列說法不正確的是  

A. 中位數(shù)是B. 平均數(shù)是C. 眾數(shù)是9D. 極差是3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電視臺走基層欄目的一位記者乘汽車赴360km外的農村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關系如圖所示,則下列結論正確的是

A)汽車在高速公路上的行駛速度為100km/h

B)鄉(xiāng)村公路總長為90km

C)汽車在鄉(xiāng)村公路上的行駛速度為60km/h

D)該記者在出發(fā)后4.5h到達采訪地

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對垃圾進行分類投放,能有效提高對垃圾的處理和再利用,減少污染,保護環(huán)境.為了調查同學們對垃圾分類知識的了解程度,增強同學們的環(huán)保意識,普及垃圾分類及投放的相關知識,某校數(shù)學興趣小組的同學設計了垃圾分類知識及投放情況問卷,并在本校隨機抽取部分同學進行問卷測試,把測試成績分成優(yōu)、良、中、差四個等級,繪制了如下不完整的統(tǒng)計圖:

根據以上統(tǒng)計信息,解答下列問題:

1)求成績是優(yōu)的人數(shù)占抽取人數(shù)的百分比;

2)求本次隨機抽取問卷測試的人數(shù);

3)請把條形統(tǒng)計圖補充完整;

4)若該校學生人數(shù)為3000人,請估計成績是優(yōu)的學生共有多少人?

查看答案和解析>>

同步練習冊答案