【題目】如圖,在平面直角坐標系中,已知點A(3,3),B(5,3).
(1)在y軸的負方向上有一點C(如圖),使得四邊形AOCB的面積為18,求C點的坐標;
(2)將△ABO先向上平移2個單位,再向左平移4個單位,得△A1B1O1
①直接寫出B1的坐標:B1( )
②求平移過程中線段OB掃過的面積.
【答案】(1) 點C的坐標為(0,﹣6)(2)(1,5 ) 22
【解析】分析:(1)根據(jù)四邊形的AOCB面積等于△BCD面積減去△AOD面積,列方程,解出即可.
(2)根據(jù)坐標平移的規(guī)則即可得出點B1的坐標;根據(jù)OB掃過的面積等于四邊形EOBF面積加上四邊形的面積即可解答.
詳解:(1)設(shè)點C的坐標為(0,﹣a),
∵S四邊形AOCB=S△BCD﹣S△AOD=18,
∴×5×(a+3)﹣×3×3=18,
解得:a=6,
所以點C的坐標為(0,﹣6);
(2)①如圖所示,△A1B1O1即為所求,B1(1,5 );
②線段OB掃過的面積=S四邊形EOBF+=2×5+4×3=22.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;
(2)如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為6的菱形ABCD中,∠DAB=60°,以點D為圓心,菱形的高DF為半徑畫弧,交AD于點E,交CD于點G,則圖中陰影部分的面積是( )
A.18 ﹣9π
B.18﹣3π
C.9 ﹣
D.18 ﹣3π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形的三個外角的度數(shù)比為 2:3:4,則它的最小內(nèi)角的度數(shù)是( )
A.20°B.40°C.60°D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別在OA,OC上
(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;
(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2017年十堰市初中體育中考中,隨意抽取某校5位同學(xué)跳遠的記錄分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是( )
A.平均數(shù)為160
B.中位數(shù)為158
C.眾數(shù)為158
D.方差為20.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com