【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c交x軸于A(﹣1,0),B(3,0)兩點(diǎn),交y軸于點(diǎn)C.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)P是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),連接CP交x軸于點(diǎn)E,過(guò)點(diǎn)P作PK∥x軸交拋物線于點(diǎn)K,交y軸于點(diǎn)N,連接AN、EN、AC,設(shè)點(diǎn)P的橫坐標(biāo)為t,四邊形ACEN的面積為S,求S與t之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,點(diǎn)F是PC中點(diǎn),過(guò)點(diǎn)K作PC的垂線與過(guò)點(diǎn)F平行于x軸的直線交于點(diǎn)H,KH=CP,點(diǎn)Q為第一象限內(nèi)直線KP下方拋物線上一點(diǎn),連接KQ交y軸于點(diǎn)G,點(diǎn)M是KP上一點(diǎn),連接MF、KF,若∠MFK=∠PKQ,MP=AE+GN,求點(diǎn)Q坐標(biāo).
(1)y=x2﹣2x﹣3;(2)S=t2+t;(3)Q(,).
【解析】
(1)函數(shù)的表達(dá)式為:y=(x+1)(x﹣3),即可求解;
(2)tan∠PCH===,求出OE=,利用S=S△NCE+S△NAC,即可求解;
(3)證明△CNP≌△KRH,求出點(diǎn)P(4,5)確定tan∠QKP===4﹣m=tan∠QPK==NG,最后計(jì)算KT=MT=(),FT=4﹣(+),tan∠MFT==4﹣m,即可求解.
(1)函數(shù)的表達(dá)式為:y=(x+1)(x﹣3)=x2﹣2x﹣3;
(2)過(guò)點(diǎn)P作PH⊥y軸交于點(diǎn)H,設(shè)點(diǎn)P(t,t2﹣2t﹣3),
CN=t2﹣2t﹣3+3=t2﹣2t,
∴tan∠PCH===,
,解得:OE=,
S=S△NCE+S△NAC=AE×CN=t2+t;
(3)過(guò)點(diǎn)K作KR⊥FH于點(diǎn)R,
∵KH=CP,∠NCP=∠H,∠R=∠PNC=90°,
∴△CNP≌△KRH,∴PN=KR=NS,
∵點(diǎn)F是PC中點(diǎn),SF∥NP,
∴PN=KR=NS=CN,即t=(t2﹣2t﹣3+3),
解得:t=0或4(舍去0),點(diǎn)P(4,5),
點(diǎn)K、P時(shí)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn),故點(diǎn)K(﹣2,5),
∵OE∥PN,則,故OE=,同理AE=,
設(shè)點(diǎn)Q(m,m2﹣2m﹣3),過(guò)點(diǎn)Q作WQ⊥KP于點(diǎn)W,
WQ=5﹣(m2﹣2m﹣3)=﹣m2+2m+8,WK=m+2,
tan∠QKP===4﹣m=tan∠QPK==NG,
則NG=8﹣2m,
MP=AE+GN=(8﹣2m)=﹣m+,
KM=KP﹣MP=,
過(guò)點(diǎn)F作FL⊥KP于點(diǎn)L,點(diǎn)F(2,1),
則FL=LK=4,則∠LKF=45°,
∵∠MFK=∠PKQ,
tan∠MFK=tan∠QKP=4﹣m,
過(guò)點(diǎn)M作MT⊥FK于點(diǎn)T,則KT=MT=(),
FT=4﹣(),
tan∠MFT==4﹣m,
解得:m=11或(舍去11),
故點(diǎn)Q(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),將點(diǎn)向左平移6個(gè)單位長(zhǎng)度,得到點(diǎn).
(1)直接寫(xiě)出點(diǎn)的坐標(biāo);
(2)若拋物線經(jīng)過(guò)點(diǎn),,求拋物線的表達(dá)式;
(3)若拋物線的頂點(diǎn)在直線上移動(dòng),當(dāng)拋物線與線段有2個(gè)公共點(diǎn)時(shí),求拋物線頂點(diǎn)橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=與y=kx2-k(k≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為全面貫徹黨的教育方針,堅(jiān)持“健康第一的教育理念,促進(jìn)學(xué)生健康成長(zhǎng),提高體質(zhì)健康水平,成都市調(diào)整體育中考實(shí)施方案:分值增加至60,男1000(女80米)必考,足球、籃球、排球“三選一”……從2019年秋季新入學(xué)的七年級(jí)起開(kāi)始實(shí)施,某1學(xué)為了解七年級(jí)學(xué)生對(duì)三大球類運(yùn)動(dòng)的喜愛(ài)情況,從七年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查問(wèn)卷,通過(guò)分析整理繪制了如下兩幅統(tǒng)計(jì)圖。請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)求參與調(diào)查的學(xué)生中,喜愛(ài)排球運(yùn)動(dòng)的學(xué)生人數(shù),并補(bǔ)全條形圖
(2)若該中學(xué)七年級(jí)共有400名學(xué)生,請(qǐng)你估計(jì)該中學(xué)七年級(jí)學(xué)生中喜愛(ài)籃球運(yùn)動(dòng)的學(xué)生有多少名?
(3)若從喜愛(ài)足球運(yùn)動(dòng)的2名男生和2名女生中隨機(jī)抽取2名學(xué)生,確定為該校足球運(yùn)動(dòng)員的重點(diǎn)培養(yǎng)對(duì)象,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求抽取的兩名學(xué)生為一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮兩人一起玩投擲一個(gè)普通正方體骰子的游戲.
(1)說(shuō)出游戲中必然事件,不可能事件和隨機(jī)事件各一個(gè);
(2)如果兩個(gè)骰子上的點(diǎn)數(shù)之積為奇數(shù),小明勝,否則小亮勝,你認(rèn)為這個(gè)游戲公平嗎?如果不公平,誰(shuí)獲勝的可能性較大?請(qǐng)說(shuō)明理由.請(qǐng)你為他們?cè)O(shè)計(jì)一個(gè)公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有長(zhǎng)為24m的籬笆,現(xiàn)一面利用墻(墻的最大可用長(zhǎng)度a為10m)圍成中間隔有一道籬笆的長(zhǎng)方形花圃,設(shè)花圃的寬AB為xm,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式及x值的取值范圍;
(2)要圍成面積為45m2的花圃,AB的長(zhǎng)是多少米?
(3)當(dāng)AB的長(zhǎng)是多少米時(shí),圍成的花圃的面積最大,最大面積為多少m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一塊長(zhǎng)為22 m,寬為17 m的矩形地面上,要修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條邊平行),剩余部分種上草坪,使草坪面積為300 m2.若設(shè)道路寬為x m,根據(jù)題意可列出方程為______________________________.
【答案】(22-x)(17-x)=300(或x2-39x+74=0)
【解析】試題分析:把所修的兩條道路分別平移到矩形的最上邊和最左邊,則剩下的草坪是一個(gè)長(zhǎng)方形,根據(jù)長(zhǎng)方形的面積公式列方程.設(shè)道路的寬應(yīng)為x米,由題意有(22﹣x)(17﹣x)=300,故答案為:(22﹣x)(17﹣x)=300.
考點(diǎn):由實(shí)際問(wèn)題抽象出一元二次方程.
【題型】填空題
【結(jié)束】
17
【題目】x=1是關(guān)于x的一元二次方程x2+mx﹣5=0的一個(gè)根,則此方程的另一個(gè)根是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③DP2=PHPC;④FE:BC=,其中正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果公司新購(gòu)進(jìn)10000千克柑橘,每千克柑橘的成本為9元. 柑橘在運(yùn)輸、存儲(chǔ)過(guò)程中會(huì)有損壞,銷售人員從所有的柑橘中隨機(jī)抽取若干柑橘,進(jìn)行“柑橘損壞率”統(tǒng)計(jì),并把獲得的數(shù)據(jù)記錄如下:
柑橘總重量n/千克 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
損壞柑橘重量m/千克 | 5.50 | 10.50 | 15.15 | 19.42 | 24.25 | 30.93 | 35.32 | 39.24 | 44.57 | 51.54 |
柑橘損壞的頻率 | 0.110 | 0.105 | 0.101 | 0.097 | 0.097 | 0.103 | 0.101 | 0.098 | 0.099 | 0.103 |
根據(jù)以上數(shù)據(jù),估計(jì)柑橘損壞的概率為 (結(jié)果保留小數(shù)點(diǎn)后一位);由此可知,去掉損壞的柑橘后,水果公司為了不虧本,完好柑橘每千克的售價(jià)至少為________元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com