如圖,在平面直角坐標(biāo)系中,點軸的正半軸上, ⊙軸于 兩點,交軸于兩點,且的中點,軸于點,若點的坐標(biāo)為(-2,0),

(1)求點的坐標(biāo).                          

(2)連結(jié),求證:

(3) 如圖10-2,過點作⊙的切線,交軸于點.動點在⊙的圓周上運動時,的比值是否發(fā)生變化,若不變,求出比值;若變化,說明變化規(guī)律

 

【答案】

1)(0,4) (2)通過證明MF是中位線來證明(3)

【解析】

試題分析:(1)⊙軸于 兩點,交軸于兩點,且的中點,弧AE等于弧CD,所以CD=AE;OC=AE=4,因此點的坐標(biāo)(0,4)

(2)連結(jié)、AC,延長MG交 AC于F,由題意可得F是AC的中點,M是AB的中點,所以MF是的中位線,所以

(3)的比值不會發(fā)生變化,

過點作⊙的切線,交軸于點.動點在⊙的圓周上運動時,根據(jù)題意=

考點:圓

點評:本題考查圓的知識,掌握圓的概念和性質(zhì)是解本題的關(guān)鍵,圓是中考比考內(nèi)容

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案