(2007•南寧)如圖,在△ABC中,點(diǎn)D,E分別是AB,AC邊的中點(diǎn),若把△ADE繞著點(diǎn)E順時(shí)針旋轉(zhuǎn)180°得到△CFE.
(1)請(qǐng)指出圖中哪些線段與線段CF相等;
(2)試判斷四邊形DBCF是怎樣的四邊形,證明你的結(jié)論.

【答案】分析:由已知可得,AD=DB=CF;根據(jù)有一組對(duì)邊平行且相等的四邊形是平行四邊形可判定四邊形DBCF是平行四邊形.
解答:解:(1)AD=CF,DB=CF.

(2)方法一:四邊形DBCF是平行四邊形.
證明:△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,得到△CFE,
∴△ADE≌△CFE,
∴AD=CF,∠A=∠ECF,
∴AB∥CF,
又∵D是AB的中點(diǎn),
∴AD=DB=CF,
∴四邊形DBCF是平行四邊形.
方法二:四邊形DBCF是平行四邊形.
證明:△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,得到△CFE,
∴△ADE≌△CFE,
∴AD=CF,DE=FE,
又∵D,E分別是AB,AC的中點(diǎn),
∴DE是△ABC的中位線,
∴BC=2DE=DE+EF=DF,
∴AD=DB=CF,
∴四邊形DBCF是平行四邊形.
點(diǎn)評(píng):此題考查了學(xué)生對(duì)旋轉(zhuǎn)的性質(zhì),全等三角形的判定及平行四邊形的判定的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《圖形的對(duì)稱(chēng)》(04)(解析版) 題型:解答題

(2007•南寧)如圖,在平面直角坐標(biāo)系中,A,B兩點(diǎn)的坐標(biāo)分別為A(-2,0),B(8,0),以AB為直徑的半圓與y軸交于點(diǎn)M,以AB為一邊作正方形ABCD.
(1)求C,M兩點(diǎn)的坐標(biāo);
(2)連接CM,試判斷直線CM是否與⊙P相切?說(shuō)明你的理由;
(3)在x軸上是否存在一點(diǎn)Q,使得△QMC的周長(zhǎng)最?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(10)(解析版) 題型:解答題

(2007•南寧)如圖,在平面直角坐標(biāo)系中,A,B兩點(diǎn)的坐標(biāo)分別為A(-2,0),B(8,0),以AB為直徑的半圓與y軸交于點(diǎn)M,以AB為一邊作正方形ABCD.
(1)求C,M兩點(diǎn)的坐標(biāo);
(2)連接CM,試判斷直線CM是否與⊙P相切?說(shuō)明你的理由;
(3)在x軸上是否存在一點(diǎn)Q,使得△QMC的周長(zhǎng)最?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(02)(解析版) 題型:解答題

(2007•南寧)如圖,在平面直角坐標(biāo)系中,A,B兩點(diǎn)的坐標(biāo)分別為A(-2,0),B(8,0),以AB為直徑的半圓與y軸交于點(diǎn)M,以AB為一邊作正方形ABCD.
(1)求C,M兩點(diǎn)的坐標(biāo);
(2)連接CM,試判斷直線CM是否與⊙P相切?說(shuō)明你的理由;
(3)在x軸上是否存在一點(diǎn)Q,使得△QMC的周長(zhǎng)最?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省鹽城市鹽城中學(xué)初三年級(jí)中考模擬數(shù)學(xué)試卷1(解析版) 題型:解答題

(2007•南寧)如圖,在平面直角坐標(biāo)系中,A,B兩點(diǎn)的坐標(biāo)分別為A(-2,0),B(8,0),以AB為直徑的半圓與y軸交于點(diǎn)M,以AB為一邊作正方形ABCD.
(1)求C,M兩點(diǎn)的坐標(biāo);
(2)連接CM,試判斷直線CM是否與⊙P相切?說(shuō)明你的理由;
(3)在x軸上是否存在一點(diǎn)Q,使得△QMC的周長(zhǎng)最小?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年廣西南寧市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•南寧)如圖,在平面直角坐標(biāo)系中,A,B兩點(diǎn)的坐標(biāo)分別為A(-2,0),B(8,0),以AB為直徑的半圓與y軸交于點(diǎn)M,以AB為一邊作正方形ABCD.
(1)求C,M兩點(diǎn)的坐標(biāo);
(2)連接CM,試判斷直線CM是否與⊙P相切?說(shuō)明你的理由;
(3)在x軸上是否存在一點(diǎn)Q,使得△QMC的周長(zhǎng)最?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案