【題目】如圖,在長方形ABCD中,AB=8cm,BC=6cm.點E是CD邊上的一點,且DE=2cm,動點P從A點出發(fā),以2cm/s的速度沿A→B→C→E運動,最終到達(dá)點E.當(dāng)△APE的面積等于20cm2時,則點P運動的時間為___________.
【答案】6或
【解析】
分為三種情況,畫出圖形,利用S△APE=20求解即可.
解:設(shè)P運動了t秒,即P運動了2t厘米,分三種情況討論,
①當(dāng)點P在AB上時,如圖1,
∵S△APE=20, AB=8cm,BC=6cm,
∴,解得:t=,
②當(dāng)點P在BC上時,如圖2,
∵S△APE=S梯形APCD-S△ADE-S△ECP=20,
即 --=20,
解得:t=,
③當(dāng)點P在CD上時,如圖3,
∵S△APE= S△APD-S△ADE=20,
即--=20,
解得:t=,(不合題意,運動第10秒點P已經(jīng)停止.)
綜上, 當(dāng)△APE的面積等于20cm2時,則點P運動的時間為或6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一張直角三角形紙片ABC,邊,,,將該直角三角形紙片沿DE折疊,使點C與點B重合,則四邊形ABDE的周長為
A. 16 B. 17 C. 18 D. 19
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側(cè)的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE、DE、DF.
(1)證明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度數(shù);
(3)設(shè)DE交AB于點G,若DF=4,cosB= ,E是 的中點,求EGED的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OM是∠AOC的平分線,ON是∠BOC的平分線.
(1)如圖1,當(dāng)∠AOB是直角,∠BOC=60°時,∠MON的度數(shù)是多少?
(2)如圖2,當(dāng)∠AOB=α,∠BOC=60°時,猜想∠MON與α的數(shù)量關(guān)系;
(3)如圖3,當(dāng)∠AOB=α,∠BOC=β時,猜想∠MON與α、β有數(shù)量關(guān)系嗎?如果有,指出結(jié)論并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜經(jīng)營戶從蔬菜批發(fā)市場批發(fā)蔬菜進(jìn)行零售,部分蔬菜批發(fā)價格與零售價格如表:
蔬菜品種 | 西紅柿 | 青椒 | 西蘭花 | 豆角 |
批發(fā)價(元/kg) | 3.6 | 5.4 | 8 | 4.8 |
零售價(元/噸) | 5.4 | 8.4 | 14 | 7.6 |
請解答下列問題:
(1)第一天,該經(jīng)營戶批發(fā)西紅柿和西蘭花兩種蔬菜共300 kg,用去了1520元錢,這兩種蔬菜當(dāng)天全部售完一共能賺多少元錢?
(2)第二天,該經(jīng)營戶用1520元錢仍然批發(fā)西紅柿和西蘭花,要想當(dāng)天全部售完后賺錢數(shù)1050元,則該經(jīng)營戶批發(fā)西紅柿多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解答過程:
若二次三項式x2-4x+m有一個因式是x+3,求另一個因式及m的值.
解:設(shè)另一個因式為x+a
則x2-4x+m=(x+3)(x+a)=x2+ax+3x+3a=x2+(a+3)x+3a,
∴∴
∴另一個因式為x-7,m的值為-21.
請依照以上方法解答下面問題:
(1)已知二次三項式x2+3x-k有一個因式是x-5,求另一個因式及k的值;
(2)已知二次三項式2x2+5x+k有一個因式是x+3,求另一個因式及k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:可以表示為兩個互質(zhì)整數(shù)的商的形式的數(shù)稱為有理數(shù),整數(shù)可以看作分母為1的有理數(shù);反之為無理數(shù).如不能表示為兩個互質(zhì)的整數(shù)的商,所以幾個號無理數(shù).可以這樣證明:
設(shè),a與b是互質(zhì)的兩個整數(shù),且b≠0,則2=,所以a=2b.
因為b是整數(shù)且不為0,所以a是不為0的偶數(shù).設(shè)a=2n(n是整數(shù)),
所以b=2n,所以b也是偶數(shù),與a與b是互質(zhì)的整數(shù)矛盾,
所以是無理數(shù).
仔細(xì)閱讀上文,然后請證明:是無理數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個結(jié)論: ①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0; 其中正確的結(jié)論有( )
A.1 個
B.2 個
C.3 個
D.4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)y= 的圖象相交于A、B兩點,一次函數(shù)的圖象與y軸相交于點C,已知點A(4,1)
(1)求反比例函數(shù)的解析式;
(2)連接OB(O是坐標(biāo)原點),若△BOC的面積為3,求該一次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com