【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)F,過點(diǎn)C作CE∥AB,與過點(diǎn)A的切線相交于點(diǎn)E,連接AD.
(1)求證:AD=AE;
(2)若AB=6,AC=4,求AE的長.
【答案】(1)詳見解析;(2).
【解析】
(1)利用平行線的性質(zhì),圓的性質(zhì)和等腰三角形的性質(zhì),證明△AEC和△ADC全等即可證明AD=AE,
(2)設(shè)AE=AD=x,CE=CD=y,利用勾股定理列出關(guān)于x和y的等式,即可求出AE的長.
(1)證明:∵AE與⊙O相切,AB是⊙O的直徑,
∴∠BAE=90°,∠ADB=90°,
∵CE∥AB,
∴∠E=90°,
∴∠E=∠ADB,
∵在△ABC中,AB=BC,
∴∠BAC=∠BCA,
∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,
∴∠BAC=∠ACE,
∴∠BCA=∠ACE,
又∵AC=AC,
∴△ADC≌△AEC(AAS),
∴AD=AE;
(2)解:設(shè)AE=AD=x,CE=CD=y,
則BD=(6﹣y),
∵△AEC和△ADB為直角三角形,
∴AE2+CE2=AC2,AD2+BD2=AB2,
AB=6,AC=4,AE=AD=x,CE=CD=y,BD=(6﹣y)代入,
解得:x=,y=,
即AE的長為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某民營企業(yè)準(zhǔn)備用14000元從外地購進(jìn)A、B兩種商品共600件,其中A種商品的成本價為20元,B種商品的成本價為30元.
(1)該民營企業(yè)從外地購得A、B兩種商品各多少件?
(2)該民營企業(yè)計劃租用甲、乙兩種貨車共6輛,一次性將A、B兩種商品運(yùn)往某城市,已知每輛甲種貨車最多可裝A種商品110件和B種商品20件;每輛乙種貨車最多可裝A種商品30件和B種商品90件,問安排甲、乙兩種貨車有幾種方案?請你設(shè)計出具體的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DF∥AC,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2.求證:∠C=∠D.請你根據(jù)條件進(jìn)行推理,得出結(jié)論,并在括號內(nèi)注明原因.
證明:∵∠1=∠2(已知)
∠1=∠3,∠2=∠4(_______),
∴∠3=∠4(等量代換),
∴_____∥_____(_______),
∴∠C=∠ABD(_______),
∵DF∥AC(已知)
∴∠D=∠ABD(_______),
∴∠C=∠D(_______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(復(fù)習(xí)舊知)
結(jié)合數(shù)軸與絕對值的知識回答下列問題:
數(shù)軸上表示4和1的兩點(diǎn)之間的距離是3:而│4-1│=3;表示-3和2兩點(diǎn)之間的距離是5:而│-3-2│=5;表示-4和-7兩點(diǎn)之間的距離是3,而│-4-(-7)│=3.
一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離公式為│m-n│.
(1)數(shù)軸上表示數(shù)-5的點(diǎn)與表示-2的點(diǎn)之間的距離為________;
(探索新知)
如圖①,我們在“格點(diǎn)”直角坐標(biāo)系上可以清楚看到:要找AB或DE的長度,顯然是化為求Rt△ABC或Rt△DEF的斜邊長.
下面:以求DE為例來說明如何解決.
從坐標(biāo)系中發(fā)現(xiàn):D(-7,5),E(4,-3).所以DF=│5-(-3)│=8,EP=│4-(-7)│=11,所以由勻股定理可得:DE=.
(2)在圖②中:設(shè)A(x1,y1),B(x2,y2),試用x1,y1,x2,y2表示:
AC=____________,BC=____________,AB=____________.
得出的結(jié)論被稱為“平面直角坐標(biāo)系中兩點(diǎn)間距離公式”.
(學(xué)以致用)
請用此公式解決如下題目:
(3)已知:A(2,1),B(4,3),C為坐標(biāo)軸上的點(diǎn),且使得△ABC是以AB為底邊的等腰三角形.請求出C點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想利用太陽光測量樓高,他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設(shè)計了一種測量方案,具體測量情況如下:如示意圖,小明邊移動邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點(diǎn)A、E、C在同一直線上).已知小明的身高EF是1.7m,請你幫小明求出樓高AB(結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)己知2a-1的平方根是土3,3a+b-1的平方根是土4,c是的整數(shù)部分,求a+2b+c的算術(shù)平方根.
(2)已知在△ABC中,AB=10,BC=21,AC=17,則△ABC面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=-(m+2)(m為常數(shù)),求當(dāng)m為何值時:
(1)y是x的一次函數(shù)?
(2)y是x的二次函數(shù)?并求出此時縱坐標(biāo)為-8的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形AOBC如圖放置,A(3,4),先將菱形向左平移9個單位長度,再向下平移1個單位長度,然后沿軸翻折,最后繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)90°得到點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)P,則點(diǎn)P的坐標(biāo)為 ( )
A. (-3,-1) B. (3,1) C. (3,1)(-3,-1) D. (-3,1)(3,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com