【題目】如圖,在平行四邊ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是 (把所有正確結(jié)論的序號都填在橫線上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF
【答案】①②④
【解析】
試題解析:①∵F是AD的中點,
∴AF=FD,
∵在ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=∠BCD,故此選項正確;
延長EF,交CD延長線于M,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A=∠MDF,
∵F為AD中點,
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故②正確;
③∵EF=FM,
∴S△EFC=S△CFM,
∵M(jìn)C>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF錯誤;
④設(shè)∠FEC=x,則∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故此選項正確.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的方程x2+2(a+1)x+2a+1=0有一個小于1的正數(shù)根,那么實數(shù)a的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點P、Q運動的時間為ts.
當(dāng)t為何值時,四邊形ABQP是矩形;
當(dāng)t為何值時,四邊形AQCP是菱形;
分別求出(2)中菱形AQCP的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品經(jīng)銷店欲購進(jìn)A、B兩種紀(jì)念品,用160元購進(jìn)的A種紀(jì)念品與用240元購進(jìn)的B種紀(jì)念品的數(shù)量相同,每件B種紀(jì)念品的進(jìn)價比A種紀(jì)念品的進(jìn)價貴10元.
(1)求A、B兩種紀(jì)念品每件的進(jìn)價分別為多少元?
(2)若該商店A種紀(jì)念品每件售價24元,B種紀(jì)念品每件售價35元,這兩種紀(jì)念品共購進(jìn)1 000件,這兩種紀(jì)念品全部售出后總獲利不低于4 900元,求A種紀(jì)念品最多購進(jìn)多少件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (m≠0)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點B的坐標(biāo)為(12,n)
, OA=10,E為x軸負(fù)半軸上一點,且tan∠AOE= .
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)延長AO交雙曲線于點D,連接CD,求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線BD=12cm,AC=16cm,AC,BD相交于點O,若E,F(xiàn)是AC上兩動點,分別從A,C兩點以相同的速度向C、A運動,其速度為0.5cm/s.
(1)當(dāng)E與F不重合時,四邊形DEBF是平行四邊形嗎?說明理由;
(2)點 E,F(xiàn)在AC上運動過程中,以D、E、B、F為頂點的四邊形是否可能為矩形?如能,求出此時的運動時間t的值;如不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AD∥BC,E,F分別在線段AB,CD上,∠ADE=∠FBC,判斷直線DE與BF的位置關(guān)系,以下是解答過程,請補(bǔ)充完整,其中括號里填依據(jù).
解:DE∥BF.
理由如下:延長DE交CB延長線于H點,
因為AD∥BC(__________).
所以∠ADE=∠H(__________).
又因為∠ADE=∠FBC(已知),
所以______=______(________).
所以DE∥BF(___________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是等邊△ABC內(nèi)一點,∠AOB=110°,∠BOC=α.將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,連接OD.
(1)試說明:△COD是等邊三角形;
(2)當(dāng)α=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當(dāng)∠BOC為多少度時,△AOD是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com